CRAN Package Check Results for Package mlr3viz

Last updated on 2025-12-20 13:50:23 CET.

Flavor Version Tinstall Tcheck Ttotal Status Flags
r-devel-linux-x86_64-debian-clang 0.10.1 8.17 156.74 164.91 ERROR
r-devel-linux-x86_64-debian-gcc 0.10.1 4.37 103.62 107.99 ERROR
r-devel-linux-x86_64-fedora-clang 0.10.1 12.00 252.41 264.41 ERROR
r-devel-linux-x86_64-fedora-gcc 0.10.1 12.00 234.62 246.62 ERROR
r-devel-windows-x86_64 0.10.1 9.00 187.00 196.00 OK
r-patched-linux-x86_64 0.10.1 7.06 241.43 248.49 OK
r-release-linux-x86_64 0.10.1 7.40 244.33 251.73 OK
r-release-macos-arm64 0.10.1 OK
r-release-macos-x86_64 0.10.1 4.00 127.00 131.00 OK
r-release-windows-x86_64 0.10.1 10.00 187.00 197.00 OK
r-oldrel-macos-arm64 0.10.1 NOTE
r-oldrel-macos-x86_64 0.10.1 5.00 139.00 144.00 NOTE
r-oldrel-windows-x86_64 0.10.1 13.00 251.00 264.00 NOTE

Check Details

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [04:35:29.782] [mlr3] Running benchmark with 40 resampling iterations INFO [04:35:30.057] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [04:35:30.141] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [04:35:30.179] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [04:35:30.238] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [04:35:30.311] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [04:35:30.410] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [04:35:30.446] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [04:35:30.630] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [04:35:30.664] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [04:35:30.699] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [04:35:30.850] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [04:35:30.918] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [04:35:30.962] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [04:35:31.178] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [04:35:31.243] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [04:35:31.350] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [04:35:31.465] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [04:35:31.564] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [04:35:31.962] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [04:35:32.017] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [04:35:32.064] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [04:35:32.109] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [04:35:32.161] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [04:35:32.240] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [04:35:32.274] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [04:35:32.317] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [04:35:32.351] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [04:35:32.421] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [04:35:32.472] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [04:35:32.551] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [04:35:32.585] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [04:35:32.649] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [04:35:32.752] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [04:35:32.821] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [04:35:32.890] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [04:35:32.951] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [04:35:33.016] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [04:35:33.077] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [04:35:33.139] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [04:35:33.214] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [04:35:33.296] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [79s/43s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_OptimInstanceSingleCrit.R: Loading required namespace: mlr3learners > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > base::assign(".ptime", proc.time(), pos = "CheckExEnv") > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [17:13:45.103] [mlr3] Running benchmark with 40 resampling iterations INFO [17:13:45.217] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [17:13:45.280] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [17:13:45.312] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [17:13:45.336] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [17:13:45.363] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [17:13:45.383] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [17:13:45.404] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [17:13:45.514] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [17:13:45.576] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [17:13:45.604] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [17:13:45.631] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [17:13:45.693] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [17:13:45.726] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [17:13:45.769] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [17:13:45.802] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [17:13:45.833] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [17:13:45.876] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [17:13:45.906] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [17:13:46.100] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [17:13:46.125] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [17:13:46.151] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [17:13:46.177] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [17:13:46.204] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [17:13:46.232] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [17:13:46.271] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [17:13:46.315] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [17:13:46.341] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [17:13:46.376] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [17:13:46.450] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [17:13:46.496] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [17:13:46.522] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [17:13:46.567] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [17:13:46.612] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [17:13:46.647] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [17:13:46.684] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [17:13:46.721] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [17:13:46.760] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [17:13:46.800] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [17:13:46.840] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [17:13:46.886] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [17:13:46.934] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [52s/29s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_OptimInstanceSingleCrit.R: Loading required namespace: mlr3learners > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_TuningInstanceSingleCrit-24.R Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1', 'test_TaskClassif.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 50 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-debian-gcc

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [17:51:57.263] [mlr3] Running benchmark with 40 resampling iterations INFO [17:51:57.821] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [17:51:57.953] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [17:51:58.076] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [17:51:58.179] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [17:51:58.309] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [17:51:58.448] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [17:51:58.507] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [17:51:58.804] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [17:51:58.930] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [17:51:59.030] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [17:51:59.192] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [17:51:59.447] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [17:51:59.647] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [17:51:59.849] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [17:52:00.014] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [17:52:00.145] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [17:52:00.297] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [17:52:00.466] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [17:52:00.820] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [17:52:00.884] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [17:52:00.993] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [17:52:01.140] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [17:52:01.221] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [17:52:01.333] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [17:52:01.479] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [17:52:01.608] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [17:52:01.706] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [17:52:01.762] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [17:52:01.841] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [17:52:01.893] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [17:52:02.004] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [17:52:02.238] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [17:52:02.496] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [17:52:02.664] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [17:52:02.761] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [17:52:02.961] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [17:52:03.170] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [17:52:03.374] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [17:52:03.579] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [17:52:03.825] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [17:52:03.987] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [135s/127s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: paradox Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClust.R:4:1', 'test_TaskClassif.R:3:1', 'test_TaskRegr.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-clang

Version: 0.10.1
Check: examples
Result: ERROR Running examples in ‘mlr3viz-Ex.R’ failed The error most likely occurred in: > ### Name: autoplot.BenchmarkResult > ### Title: Plots for Benchmark Results > ### Aliases: autoplot.BenchmarkResult > > ### ** Examples > > if (requireNamespace("mlr3")) { + library(mlr3) + library(mlr3viz) + + tasks = tsks(c("pima", "sonar")) + learner = lrns(c("classif.featureless", "classif.rpart"), + predict_type = "prob") + resampling = rsmps("cv") + object = benchmark(benchmark_grid(tasks, learner, resampling)) + + head(fortify(object)) + autoplot(object) + autoplot(object$clone(deep = TRUE)$filter(task_ids = "pima"), type = "roc") + } Loading required namespace: mlr3 INFO [12:31:59.527] [mlr3] Running benchmark with 40 resampling iterations INFO [12:31:59.933] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 1/10) INFO [12:32:00.106] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 2/10) INFO [12:32:00.197] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 3/10) INFO [12:32:00.328] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 4/10) INFO [12:32:00.477] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 5/10) INFO [12:32:00.571] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 6/10) INFO [12:32:00.664] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 7/10) INFO [12:32:00.860] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 8/10) INFO [12:32:00.907] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 9/10) INFO [12:32:00.952] [mlr3] Applying learner 'classif.featureless' on task 'pima' (iter 10/10) INFO [12:32:01.041] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 1/10) INFO [12:32:01.160] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 2/10) INFO [12:32:01.285] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 3/10) INFO [12:32:01.365] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 4/10) INFO [12:32:01.513] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 5/10) INFO [12:32:01.637] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 6/10) INFO [12:32:01.802] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 7/10) INFO [12:32:01.922] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 8/10) INFO [12:32:02.520] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 9/10) INFO [12:32:02.613] [mlr3] Applying learner 'classif.rpart' on task 'pima' (iter 10/10) INFO [12:32:02.682] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 1/10) INFO [12:32:02.770] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 2/10) INFO [12:32:02.847] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 3/10) INFO [12:32:02.982] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 4/10) INFO [12:32:03.091] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 5/10) INFO [12:32:03.177] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 6/10) INFO [12:32:03.324] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 7/10) INFO [12:32:03.427] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 8/10) INFO [12:32:03.556] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 9/10) INFO [12:32:03.638] [mlr3] Applying learner 'classif.featureless' on task 'sonar' (iter 10/10) INFO [12:32:03.783] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 1/10) INFO [12:32:04.022] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 2/10) INFO [12:32:04.202] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 3/10) INFO [12:32:04.418] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 4/10) INFO [12:32:04.603] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 5/10) INFO [12:32:04.808] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 6/10) INFO [12:32:04.951] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 7/10) INFO [12:32:05.076] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 8/10) INFO [12:32:05.254] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 9/10) INFO [12:32:05.447] [mlr3] Applying learner 'classif.rpart' on task 'sonar' (iter 10/10) INFO [12:32:05.667] [mlr3] Finished benchmark Error in `[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash") : attempt access index 9/9 in VECTOR_ELT Calls: benchmark ... initialize -> .__ResultData__initialize -> [ -> [.data.table Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: tests
Result: ERROR Running ‘testthat.R’ [127s/112s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > if (requireNamespace("testthat", quietly = TRUE)) { + library("testthat") + library("mlr3viz") + test_check("mlr3viz") + } Starting 2 test processes. > test_EnsembleFSResult.R: Loading required namespace: vdiffr Saving _problems/test_BenchmarkResult-7.R > test_Filter.R: Loading required namespace: vdiffr Saving _problems/test_LearnerClassif-6.R > test_OptimInstanceSingleCrit.R: Loading required package: paradox > test_PredictionRegr.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. Saving _problems/test_ResampleResult-7.R > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TaskClassif.R: `stat_bin()` using `bins = 30`. Pick better value `binwidth`. > test_TuningInstanceSingleCrit.R: Loading required package: mlr3 Saving _problems/test_plot_learner_prediction-8.R Saving _problems/test_plot_learner_prediction-41.R Saving _problems/test_plot_learner_prediction-51.R Saving _problems/test_TuningInstanceSingleCrit-24.R [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] ══ Skipped tests (20) ══════════════════════════════════════════════════════════ • On CRAN (20): 'test_Filter.R:3:1', 'test_LearnerClassif.R:11:1', 'test_EnsembleFSResult.R:4:1', 'test_LearnerClassifRpart.R:6:1', 'test_LearnerClassifCVGlmnet.R:8:1', 'test_LearnerClustHierarchical.R:7:3', 'test_LearnerClasssifGlmnet.R:8:1', 'test_LearnerRegrCVGlmnet.R:8:1', 'test_LearnerRegr.R:1:1', 'test_LearnerRegr.R:11:1', 'test_LearnerRegr.R:21:1', 'test_LearnerRegrGlmnet.R:7:1', 'test_LearnerRegrRpart.R:6:1', 'test_PredictionClassif.R:8:1', 'test_PredictionClust.R:8:3', 'test_PredictionRegr.R:3:1', 'test_OptimInstanceSingleCrit.R:35:1', 'test_TaskClassif.R:3:1', 'test_TaskClust.R:4:1', 'test_TaskRegr.R:3:1' ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test_BenchmarkResult.R:7:1'): (code run outside of `test_that()`) ─── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::benchmark(mlr3::benchmark_grid(tasks, learner, resampling)) at test_BenchmarkResult.R:7:1 2. └─ResultData$new(grid, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_LearnerClassif.R:6:3'): autoplot.PredictionClassif decision boundary probability ── Error in ``[.data.table`(grid, , `:=`(".prob.response", .SD[, paste0("prob.", get("response")), with = FALSE]), by = "response")`: attempt access index 7/7 in VECTOR_ELT Backtrace: ▆ 1. ├─ggplot2::autoplot(learner, type = "prediction", task = task) at test_LearnerClassif.R:6:3 2. ├─mlr3viz:::autoplot.LearnerClassifRpart(...) 3. ├─base::NextMethod() 4. └─mlr3viz:::autoplot.LearnerClassif(...) 5. └─mlr3viz:::predict_grid(...) 6. ├─...[] 7. └─data.table:::`[.data.table`(...) ── Error ('test_ResampleResult.R:7:1'): (code run outside of `test_that()`) ──── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3::resample(task, learner, resampling) at test_ResampleResult.R:7:1 2. └─ResultData$new(data, data_extra, store_backends = store_backends) 3. └─mlr3 (local) initialize(...) 4. └─mlr3:::.__ResultData__initialize(...) 5. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 6. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:8:3'): plot_learner_prediction.LearnerClassif ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:8:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:41:3'): plot_learner_prediction.LearnerRegr 2d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:41:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_plot_learner_prediction.R:51:3'): plot_learner_prediction.LearnerRegr 1d ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─mlr3viz::plot_learner_prediction(learner, task, expand_range = 0.1) at test_plot_learner_prediction.R:51:3 2. └─mlr3::resample(...) 3. └─ResultData$new(data, data_extra, store_backends = store_backends) 4. └─mlr3 (local) initialize(...) 5. └─mlr3:::.__ResultData__initialize(...) 6. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 7. └─data.table:::`[.data.table`(...) ── Error ('test_TuningInstanceSingleCrit.R:24:1'): (code run outside of `test_that()`) ── Error in ``[.data.table`(data, , `:=`("task_hash", task[[1L]]$hash), by = "uhash")`: attempt access index 9/9 in VECTOR_ELT Backtrace: ▆ 1. └─tuner$optimize(instance) 2. └─mlr3tuning:::.__TunerBatchFromOptimizerBatch__optimize(...) 3. └─private$.optimizer$optimize(inst) 4. └─bbotk:::.__OptimizerBatch__optimize(...) 5. └─bbotk::optimize_batch_default(inst, self) 6. ├─base::tryCatch(...) 7. │ └─base (local) tryCatchList(expr, classes, parentenv, handlers) 8. │ └─base (local) tryCatchOne(expr, names, parentenv, handlers[[1L]]) 9. │ └─base (local) doTryCatch(return(expr), name, parentenv, handler) 10. └─get_private(optimizer)$.optimize(instance) 11. └─bbotk:::.__OptimizerBatchRandomSearch__.optimize(...) 12. └─inst$eval_batch(design$data) 13. └─bbotk:::.__OptimInstanceBatch__eval_batch(...) 14. └─self$objective$eval_many(xss_trafoed) 15. └─bbotk:::.__Objective__eval_many(...) 16. ├─mlr3misc::invoke(private$.eval_many, xss = xss, .args = self$constants$values) 17. │ └─base::eval.parent(expr, n = 1L) 18. │ └─base::eval(expr, p) 19. │ └─base::eval(expr, p) 20. └─private$.eval_many(xss = xss, resampling = `<list>`) 21. └─mlr3tuning:::.__ObjectiveTuningBatch__.eval_many(...) 22. └─mlr3::benchmark(...) 23. └─ResultData$new(grid, data_extra, store_backends = store_backends) 24. └─mlr3 (local) initialize(...) 25. └─mlr3:::.__ResultData__initialize(...) 26. ├─data[, `:=`("task_hash", task[[1L]]$hash), by = "uhash"] 27. └─data.table:::`[.data.table`(...) [ FAIL 7 | WARN 51 | SKIP 20 | PASS 63 ] Deleting unused snapshots: 'BenchmarkResult/bmr-boxplot.svg', 'BenchmarkResult/bmr-holdout-ci.svg', 'BenchmarkResult/bmr-holdout-roc.svg', 'BenchmarkResult/bmr-prc.svg', 'BenchmarkResult/bmr-roc.svg', 'LearnerClassif/learner-classif-prob.svg', 'LearnerClustHierarchical/learner-clust-agnes.svg', 'LearnerClustHierarchical/learner-clust-hclust.svg', 'PredictionClust/predictionclust-pca.svg', 'PredictionClust/predictionclust-scatter.svg', 'PredictionClust/predictionclust-sil.svg', 'ResampleResult/resampleresult-boxplot.svg', 'ResampleResult/resampleresult-histogram.svg', 'ResampleResult/resampleresult-prc.svg', 'ResampleResult/resampleresult-roc.svg', 'TuningInstanceSingleCrit/tisc-incumbent.svg', 'TuningInstanceSingleCrit/tisc-marginal-01.svg', 'TuningInstanceSingleCrit/tisc-marginal-02.svg', …, 'plot_learner_prediction/learner-prediction-prob.svg', and 'plot_learner_prediction/learner-prediction-response.svg' Error: ! Test failures. Execution halted Flavor: r-devel-linux-x86_64-fedora-gcc

Version: 0.10.1
Check: package dependencies
Result: NOTE Package suggested but not available for checking: ‘mlr3proba’ Flavors: r-oldrel-macos-arm64, r-oldrel-macos-x86_64, r-oldrel-windows-x86_64