BayesPIM: Bayesian Prevalence-Incidence Mixture Model
Models time-to-event data from interval-censored
  screening studies. It accounts for latent prevalence at baseline and 
  incorporates misclassification due to imperfect test sensitivity. For usage
  details, see the package vignette ("BayesPIM_intro"). Further details can be 
  found in T. Klausch, B. I. Lissenberg-Witte, and V. M. Coupe (2024),
  "A Bayesian prevalence-incidence mixture model for screening outcomes with 
  misclassification", <doi:10.48550/arXiv.2412.16065>.
| Version: | 
1.0.0 | 
| Depends: | 
R (≥ 3.5.0), coda | 
| Imports: | 
Rcpp, mvtnorm, MASS, ggamma, doParallel, foreach, parallel, actuar | 
| LinkingTo: | 
Rcpp | 
| Suggests: | 
knitr, rmarkdown | 
| Published: | 
2025-03-22 | 
| DOI: | 
10.32614/CRAN.package.BayesPIM | 
| Author: | 
Thomas Klausch [aut, cre] | 
| Maintainer: | 
Thomas Klausch  <t.klausch at amsterdamumc.nl> | 
| BugReports: | 
https://github.com/thomasklausch2/BayesPIM/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/thomasklausch2/bayespim | 
| NeedsCompilation: | 
yes | 
| Materials: | 
README  | 
| CRAN checks: | 
BayesPIM results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=BayesPIM
to link to this page.