Package 'KWCChangepoint'

November 26, 2025

Type Package

```
Title Robust Changepoint Detection for Functional and Multivariate
      Data
Version 0.2.3
Description
      Detect and test for changes in covariance structures of functional data, as well as changepoint de-
      tection for multivariate data more generally. Method for detecting non-stationarity in rest-
      ing state functional Magnetic Resonance Imaging (fMRI) scans as seen in Ram-
      say, K., & Chenouri, S. (2025) < doi:10.1080/10485252.2025.2503891> is imple-
      mented in fmri_changepoints(). Also includes depth- and rank-based implementa-
      tion of the wild binary segmentation algorithm for detecting multiple changepoints in multivari-
      ate data.
License MIT + file LICENSE
URL https://github.com/adeeb99/KWCChangepoint,
      https://adeeb99.github.io/KWCChangepoint/
BugReports https://github.com/adeeb99/KWCChangepoint/issues
Depends R (>= 4.1)
Encoding UTF-8
Imports ddalpha, fda.usc, tibble, Rcpp (>= 1.0.12)
LinkingTo Rcpp, RcppArmadillo
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
SystemRequirements C++17
RoxygenNote 7.3.2
NeedsCompilation yes
Author Adeeb Rouhani [aut, cre, cph] (ORCID:
       <a href="https://orcid.org/0009-0007-5294-2226">https://orcid.org/0009-0007-5294-2226</a>),
      Kelly Ramsay [aut] (ORCID: <a href="https://orcid.org/0000-0001-5615-2052">https://orcid.org/0000-0001-5615-2052</a>)
Maintainer Adeeb Rouhani <adeeb.rouhani@gmail.com>
Repository CRAN
Date/Publication 2025-11-26 20:50:02 UTC
```

Contents

	KWCChangepoint-package	2
	amoc_test	3
	dwbs	4
	epidemic_test	5
	fkwc	7
	fkwc_multisample	8
	fkwc_posthoc	10
	fmri_changepoints	11
	mkwp	13
	uni_mean	14
	uni_scale	15
Index		17

KWCChangepoint-package

KWCChangepoint: Robust Changepoint Detection for Functional and Multivariate Data

Description

Detect and test for changes in covariance structures of functional data, as well as changepoint detection for multivariate data more generally. Method for detecting non-stationarity in resting state functional Magnetic Resonance Imaging (fMRI) scans as seen in Ramsay, K., & Chenouri, S. (2025) doi:10.1080/10485252.2025.2503891 is implemented in fmri_changepoints(). Also includes depth-and rank-based implementation of the wild binary segmentation algorithm for detecting multiple changepoints in multivariate data.

Links

- GitHub: https://github.com/adeeb99/KWCChangepoint
- Bug reports: https://github.com/adeeb99/KWCChangepoint/issues

Author(s)

Maintainer: Adeeb Rouhani <adeeb.rouhani@gmail.com> (ORCID) [copyright holder] Authors:

• Kelly Ramsay (ORCID)

See Also

Useful links:

- https://github.com/adeeb99/KWCChangepoint
- https://adeeb99.github.io/KWCChangepoint/
- Report bugs at https://github.com/adeeb99/KWCChangepoint/issues

amoc_test 3

amoc_test	Conduct an AMOC hypothesis test	
amoc_test	Conduct an AMOC hypothesis test	

Description

Conduct an at-most one changepoint hypothesis test for changes in the covariance operator of functional data based on the FKWC (functional Kruskal–Wallis covariance changepoint) procedures outlined by Ramsay and Chenouri (2025).

Usage

```
amoc_test(data, ranks = NULL, depth = c("RPD", "FM", "LTR", "FMd", "RPDd"))
```

Arguments

data Data in matrix or data. frame form, where each row is an observation and each

column is a dimension.

ranks Optional if data is already ranked.

depth Depth function of choice.

Value

A list consisting of:

• \$changepoint : Index of the estimated changepoint.

• \$pvalue : The p-value based on the null distribution.

• \$method: A string "AMOC test (KWCChangepoint)"

Note

The options for the depth argument are as follows:

- RPD: Random projection depth
- FM: Frainman-Muniz depth
- LTR: L^2 -root depth, most suitable for detecting changes in the norm
- FMd: Frainman-Muniz depth of the data and its first order derivative
- RPDd: Random projection depth of the data and its first order derivative
 The depth arguments that incorporate the first order derivative (which is approximated using fda.usc::fdata.deriv) result in a more robust detection of changes in the covariance structure (Ramsay and Chenouri, 2025).

References

Ramsay, K., & Chenouri, S. (2025). Robust changepoint detection in the variability of multivariate functional data. Journal of Nonparametric Statistics. https://doi.org/10.1080/10485252.2025.2503891

4 dwbs

Examples

dwbs

Find changepoints using depth-based wild binary segmentation

Description

Detect multiple changepoints in multivariate data using the depth-based wild binary segmentation algorithm (Ramsay and Chenouri, 2023).

Usage

```
dwbs(
   data,
   numInt = 10,
   thresh = 1.3584,
   alpha = 1,
   depth = c("spat", "hs", "mahal", "mahal75")
)
```

Arguments

data	Data in ${\tt matrix}$ or data. frame form, where each row is an observation and each column is a dimension.
numInt	Number of intervals to be generated.
thresh	Numeric scalar; detection threshold. Larger values make detection more conservative.
alpha	Set as 1 by default, applying a standard SIC penalty. Set to a number larger than 1 for a strengthened SIC.
depth	Depth function.

Value

A list consisting of:

- \$changepoints: Indicies of the change-points detected; will return integer (0) if no change-points are detected.
- \$method: A string "DWBS"

epidemic_test 5

Note

The options for the depth argument are as follows:

- · spat: Spatial depth
- hs: Halfspace depth
- mahal: Mahalanobis depth
- mahal75: Mahalanobis depth based on re-weighted Minimum Covariance Determinant with 25% breakdown.

References

Fryzlewicz, Piotr. "Wild Binary Segmentation for Multiple Change-Point Detection." The Annals of Statistics 42, no. 6 (2014). https://doi.org/10.1214/14-AOS1245.

Killick, R., P. Fearnhead, and I. A. Eckley. "Optimal Detection of Changepoints With a Linear Computational Cost." Journal of the American Statistical Association 107, no. 500 (2012): 1590–98. https://doi.org/10.1080/01621459.2012.737745.

Ramsay, K., & Chenouri, S. (2023). Robust nonparametric multiple changepoint detection for multivariate variability. Econometrics and Statistics. https://doi.org/10.1016/j.ecosta.2023.09.001

Examples

epidemic_test

Test for an epidemic period in data

Description

Test for a temporary change in the covariance operator of functional data using the FKWC (functional Kruskal–Wallis covariance changepoint) procedures outlined by Ramsay and Chenouri (2025).

Usage

```
epidemic_test(data, ranks = NULL, depth = c("RPD", "FM", "LTR", "FMd", "RPDd"))
```

6 epidemic_test

Arguments

data	Data in matrix or data. frame form, where each row is an observation and each column is a dimension.
ranks	Optional if data is already ranked.
depth	Depth function of choice.

Value

A list consisting of:

- \$changepoints: Indices of the estimated start and end points for the epidemic period.
- \$pvalue: The p-value based on the null distribution.
- \$method: A string "Epidemic test (KWCChangepoint)"

Note

The options for the depth argument are as follows:

- RPD: Random projection depth
- FM: Frainman-Muniz depth
- ullet LTR: L^2 -root depth, most suitable for detecting changes in the norm
- FMd: Frainman-Muniz depth of the data and its first order derivative
- RPDd: Random projection depth of the data and its first order derivative

 The depth arguments that incorporate the first order derivative (which is approximated using fda.usc::fdata.deriv) result in a more robust detection of changes in the covariance structure (Ramsay and Chenouri, 2025).

References

Ramsay, K., & Chenouri, S. (2025). Robust changepoint detection in the variability of multivariate functional data. Journal of Nonparametric Statistics. https://doi.org/10.1080/10485252.2025.2503891

fkwc 7

fkwc

Detect changepoints in functional data

Description

More specifically, fkwc() uses the functional Kruskal-Wallis tests for covariance changepoint algorithm (FKWC) to detect changes in the covariance operator.

Usage

```
fkwc(data, depth = c("RPD", "FM", "LTR", "FMd", "RPDd"), k = 0.25)
```

Arguments

data Functional data in matrix or data. frame form, where each row is an observa-

tion/function and the columns are the grid.

depth Depth function of choice.

k Penalty constant passed to pruned exact linear time algorithm.

Value

A list consisting of:

• \$changepoints : Indices of the changepoints detected; will return integer(0) if no changepoints are detected.

• \$method: A string "FKWC"

Note

The options for the depth argument are as follows:

- RPD: Random projection depth, which generally performs best
- FM: Frainman-Muniz depth
- ullet LTR: L^2 -root depth, most suitable for detecting changes in the norm
- FMd: Frainman-Muniz depth of the data and its first order derivative
- RPDd: Random projection depth of the data and its first order derivative

 The depth arguments that incorporate the first order derivative (which is approximated using fda.usc::fdata.deriv) result in a more robust detection of changes in the covariance structure (Ramsay and Chenouri, 2025).

The penalty is of the form

$$3.74 + k\sqrt{n}$$

where n is the number of observations. In the case that there is potentially correlated observations, the parameter could be set to k = 1. More information could be found in the reference.

8 fkwc_multisample

References

Killick, R., P. Fearnhead, and I. A. Eckley. "Optimal Detection of Changepoints With a Linear Computational Cost." Journal of the American Statistical Association 107, no. 500 (2012): 1590–98. https://doi.org/10.1080/01621459.2012.737745.

Ramsay, K., & Chenouri, S. (2025). Robust changepoint detection in the variability of multivariate functional data. Journal of Nonparametric Statistics. https://doi.org/10.1080/10485252.2025.2503891

Examples

```
set.seed(2)
# Generating 80 observations, with a changepoint (in our case a change in
# kernel) at observation 40
n <- 80
k0 <- 40
T <- 30
t <- seq(0, 1, length.out = T)
# Both kernels K1 and K2 are Gaussian (or squared exponential) kernels but
# with different lengthscale values, and thus we hope to detect it.
K_{se} \leftarrow function(s, t, ell) exp(-((s - t)^2) / (2 * ell^2))
    <- outer(t, t, function(a,b) K_se(a,b, ell = 0.20))
     <- outer(t, t, function(a,b) K_se(a,b, ell = 0.07))
L1 <- chol(K1 + 1e-8 * diag(T))
L2 <- chol(K2 + 1e-8 * diag(T))
Z1 <- matrix(rnorm(k0 * T),</pre>
                                  k0,
Z2 \leftarrow matrix(rnorm((n-k0) * T), n - k0,
\# We finally have an 80 x 30 matrix where the rows are the observations and
# the columns are the grid points.
X <- rbind(Z1 %*% t(L1), Z2 %*% t(L2))</pre>
fkwc(X)
```

 ${\sf fkwc_multisample}$

Multisample hypothesis test for difference in covariance operators

Description

Executes a multisample hypothesis test for differences in covariance operators using functional Kruskal–Wallis tests for covariance (FKWC) as outlined by Ramsay and Chenouri (2024). The function requires the first order derivative of the functional data in order to better detect changes.

Usage

```
fkwc_multisample(data, derivs, g, p = 20)
```

fkwc_multisample 9

Arguments

data	Functional data in matrix or data.frame form, where each row is an observation/function and the columns are the grid.
derivs	First order derivative of the functional data in matrix or data.frame form.
g	A factor object that indicates which sample each row of data belongs to.
р	Number of random projections to be generated in order to compute random projection depths of the data.

Value

A list consisting of:

- \$statistic: The observed test statistic.
- \$pvalue : The p-value based on the null distribution.
- \$method: A string "FKWC"

References

Ramsay, K., & Chenouri, S. (2024). Robust nonparametric hypothesis tests for differences in the covariance structure of functional data. Canadian Journal of Statistics, 52 (1), 43–78. https://doi.org/10.1002/cjs.11767

See Also

```
fda.usc::fdata.deriv(): for approximating the first order derivative if unavailable. fkwc_posthoc(): for a post-hoc version of this test
```

```
set.seed(111)
t < - seq(0, 1, length.out = 200)
### Generating three sets of Brownian curves with different kernels, each
### kernel generating 20 observations
# Brownian process 1
fd1 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                            par.list = list(scale = 10, theta = 1))
fd1_d <- fda.usc::fdata.deriv(fd1)</pre>
# Brownian process 2
fd2 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                            par.list = list(scale = 1, theta = 1))
fd2_d <- fda.usc::fdata.deriv(fd2)</pre>
# Brownian process 3
fd3 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                            par.list = list(scale = 1, theta = 5))
fd3_d <- fda.usc::fdata.deriv(fd3)</pre>
# Functional data in one matrix and first order derivatives in another matrix
funcdata <- rbind(fd1$data, fd2$data, fd3$data)</pre>
```

10 fkwc_posthoc

fkwc_posthoc

Post-hoc hypothesis test for difference in covariance operators.

Description

This function is post-hoc, pairwise test version of fkwc_multisample()

Usage

```
fkwc_posthoc(data, derivs, g, p = 20)
```

Arguments

data	Functional data in matrix or data.frame form, where each row is an observation/function and the columns are the grid.
derivs	First order derivative of the functional data in matrix or data. frame form.
g	A factor object that indicates which sample each row of data belongs to.
р	Number of random projections to be generated in order to compute random projection depths of the data.

Value

A matrix of p-values for each pairwise comparison with a Šidák correction applied.

References

Ramsay, K., & Chenouri, S. (2024). Robust nonparametric hypothesis tests for differences in the covariance structure of functional data. Canadian Journal of Statistics, 52 (1), 43–78. https://doi.org/10.1002/cjs.11767

See Also

fda.usc::fdata.deriv: for approximating the first order derivative if unavailable.

fmri_changepoints 11

Examples

```
set.seed(111)
t < - seq(0, 1, length.out = 200)
### Generating three sets of brownian curves with different kernels
# Brownian process 1
fd1 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                            par.list = list(scale = 10, theta = 1))
fd1_d <- fda.usc::fdata.deriv(fd1)
# Brownian process 2
fd2 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                           par.list = list(scale = 1, theta = 1))
fd2_d <- fda.usc::fdata.deriv(fd2)</pre>
# Brownian process 3
fd3 <- fda.usc::rproc2fdata(n = 20, t = t, sigma = "brownian",
                           par.list = list(scale = 1, theta = 5))
fd3_d <- fda.usc::fdata.deriv(fd3)</pre>
# Functional data in one matrix and first order derivatives in another matrix
funcdata <- rbind(fd1$data, fd2$data, fd3$data)</pre>
funcderivs <- rbind(fd1_d$data, fd2_d$data, fd3_d$data)</pre>
fkwc_posthoc(data = funcdata,
             derivs = funcderivs,
             g = factor(rep(1:3, each = 20)),
             p = 1000
```

fmri_changepoints

Detect changepoints in a resting state fMRI scan

Description

Functional magnetic resonance imaging scans are expected to be stationary after being pre-processed. This function attempts to find potential changepoints using the findings of Ramsay and Chenouri (2025).

Usage

```
fmri_changepoints(data, p = 100, k = 0.3)
```

Arguments

data	A four dimensional array, where the fourth dimension is time.
р	Number of random vector projections, set to 100 by default.
k	Penalty constant passed to pruned exact linear time algorithm.

12 fmri_changepoints

Value

A list consisting of:

- \$changepoints : Indices of the change-points detected; will return integer (0) if no change-points are detected.
- \$method: A string "fMRI changepoints (KWCChangepoint)"

Note

The penalty is of the form

$$3.74 + k\sqrt{n}$$

where n is the number of observations. In the case that there is potentially correlated observations, the parameter could be set to k = 1. More information could be found in the reference.

The example in this document is a simple "toy example", as good fMRI data simulation requires more dependencies. For generating fMRI data, see neuRosim::simVOLfmri(), neuRosim::simTSrestingstate().

References

Ramsay, K., & Chenouri, S. (2025). Robust changepoint detection in the variability of multivariate functional data. Journal of Nonparametric Statistics. https://doi.org/10.1080/10485252.2025.2503891

```
# In order to replicate how a changepoint would appear in a resting-state
# fMRI scan in a manner that is not computationally expensive, this example
# constructs an image of a 3D ball taken at 12 time stamps. The noise, and
# therefore the covariance function, changes at time stamp 6.
x_dim < -24
y_dim <- 24
z_dim <- 10
time_dim <- 12
image_array <- array(0, dim = c(x_dim, y_dim, z_dim, time_dim))</pre>
center <- c(x_dim / 2, y_dim / 2, z_dim / 2)
radius <- min(x_dim, y_dim, z_dim) / 4
set.seed(42)
for (t in 1:time_dim) {
 for (x in 1:x_dim) {
   for (y in 1:y_dim) {
      for (z in 1:z_dim) {
      dist_from_center \leftarrow sqrt((x - center[1])^2 + (y - center[2])^2 + (z - center[3])^2)
        if (dist_from_center <= radius) {</pre>
          # Adding noise with increasing variability at timestamp 6
          if (t \le 6) {
            noise <- rnorm(1, mean = 0, sd = 0.1) # Low variability noise
          } else {
            noise <- rnorm(1, mean = 0, sd = 2) # High variability noise
```

mkwp 13

```
image_array[x, y, z, t] <- noise
} else {
    # Add lower intensity noise outside the ball
    image_array[x, y, z, t] <- rnorm(1, mean = 0, sd = 0.005)
}
}
}
fmri_changepoints(image_array, k = 0.1, p = 10)</pre>
```

mkwp

Find changepoints in multivariate data

Description

The mkwp() function detects changepoints in multivariate data using multivariate Kruskal-Wallis PELT (MKWP) algorithm developed by Ramsay and Chenouri (2023).

Usage

```
mkwp(data, depth = c("spat", "mahal", "mahal75", "hs"), k = 0.2)
```

Arguments

data
Data in matrix or data. frame form, where each row is an observation and each column is a dimension.

Depth function.

Repeated to pruned exact linear time algorithm.

Value

A list consisting of:

- \$changepoints : Indices of the changepoints detected; will return integer(0) if no changepoints are detected.
- method: A string "Multivariate Kruskal-Wallis PELT (MKWP)"

Note

The options for the depth argument are as follows:

spat: Spatial depth hs: Halfspace depth

• mahal: Mahalanobis depth

14 uni_mean

 mahal75: Mahalanobis depth based on re-weighted Minimum Covariance Determinant with 25% breakdown.

Spatial depth is the default choice, as it computationally quicker than the other depths for larger data while giving similar result to other depths.

The penalty is of the form

$$3.74 + k\sqrt{n}$$

where n is the number of observations. In the case that there is potentially correlated observations, the parameter could be set to k = 1. More information could be found in the reference.

References

Killick, R., P. Fearnhead, and I. A. Eckley. "Optimal Detection of Changepoints With a Linear Computational Cost." Journal of the American Statistical Association 107, no. 500 (2012): 1590–98. https://doi.org/10.1080/01621459.2012.737745.

Ramsay, K., & Chenouri, S. (2023). Robust nonparametric multiple changepoint detection for multivariate variability. Econometrics and Statistics. https://doi.org/10.1016/j.ecosta.2023.09.001

Examples

uni_mean

Find mean changes in a univariate sequence

Description

The uni_mean() function ranks the observations from smallest to largest, then applies the pruned exact linear time algorithm with the penalty parameter beta to detect changepoints.

Usage

```
uni_mean(data, beta = 10)
```

Arguments

data A vector or one-dimensional array.

beta Numeric penalty constant passed to pruned exact linear time algorithm.

uni_scale 15

Value

A list consisting of:

• \$changepoints : Indices of the changepoints detected; will return integer (0) if no changepoints are detected.

• \$method: A string "Univariate Changepoint in Mean (FKWC)"

References

Killick, R., P. Fearnhead, and I. A. Eckley. "Optimal Detection of Changepoints With a Linear Computational Cost." Journal of the American Statistical Association 107, no. 500 (2012): 1590–98. https://doi.org/10.1080/01621459.2012.737745.

Examples

uni_scale

Find scale changes in a univariate sequence

Description

The uni_scale() function ranks the observations based on their distance from the mean, then applies the pruned exact linear time algorithm with the penalty parameter beta to detect changepoints.

Usage

```
uni_scale(data, beta = 10)
```

Arguments

data A vector or one-dimensional array.

Numeric penalty constant passed to pruned exact linear time algorithm, 10 by

default.

Value

A list consisting of:

- \$changepoints : Indices of the changepoints detected; will return integer(0) if no changepoints are detected.
- \$method: A string "Univariate Changepoint in Scale (KWCChangepoint)"

16 uni_scale

References

Killick, R., P. Fearnhead, and I. A. Eckley. "Optimal Detection of Changepoints With a Linear Computational Cost." Journal of the American Statistical Association 107, no. 500 (2012): 1590–98. https://doi.org/10.1080/01621459.2012.737745.

Index

```
\verb"amoc_test", 3
dwbs, 4
{\tt epidemic\_test}, {\tt 5}
fda.usc::fdata.deriv, 3, 6, 7, 10
fda.usc::fdata.deriv(), 9
fkwc, 7
fkwc_multisample, 8
fkwc_multisample(), 10
{\sf fkwc\_posthoc},\, {\color{red} 10}
fkwc_posthoc(), 9
fmri_changepoints, 11
{\it KWCChange point}
         (KWCChangepoint-package), 2
KWCChangepoint-package, 2
mkwp, 13
neuRosim::simTSrestingstate(), 12
neuRosim::simVOLfmri(), 12
uni_mean, 14
uni_scale, 15
```