
Package ‘RootscanR’
October 30, 2025

Title Stitching and Analyzing Root Scans

Version 0.0.1

Author Sophie Kersting [aut, cre] (ORCID:
<https://orcid.org/0000-0002-1038-9246>),

Linda Knüver [aut],
Mareike Fischer [aut] (ORCID: <https://orcid.org/0000-0002-9429-0859>)

Maintainer Sophie Kersting <sophie.kersting@uni-greifswald.de>

Description Minirhizotrons are widely used to observe and explore roots and
their growth. This package provides the means to stitch images and
divide them into depth layers.
Please note that this R package was developed alongside the following
manuscript:
Stitching root scans and extracting depth layer information -- a workflow
and practical examples, S. Kersting, L. Knüver, and M. Fischer.
The manuscript is currently in preparation and should be citet as soon as
it is available.
This project was supported by the project ArtIGROW, which is a part of the
WIR!-Alliance ArtIFARM – Artificial Intelligence in Farming funded by the
German Federal Ministry of Research, Technology and Space (No. 03WIR4805).

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports stringr, grid, png, abind, parallel

Encoding UTF-8

NeedsCompilation no

RoxygenNote 7.3.3

Repository CRAN

Date/Publication 2025-10-30 20:00:02 UTC

Contents
checkInput . 2
cm2px . 3

1

https://orcid.org/0000-0002-1038-9246
https://orcid.org/0000-0002-9429-0859

2 checkInput

combineStatsWithDL . 4
createDepthLayerMasks . 4
findAvgOverlap . 7
findAvgSurface . 9
findOverlap . 11
findSurface . 14
getDepthLayerInfo . 16
getDepthLayerInfo_par . 20
getNeighborCoords . 23
getOverviewInput . 24
kimuraLength . 25
ppcm2ppi . 28
showImgMask . 28
skelPxWidth . 30
stitchImgs . 31

Index 35

checkInput Check if the root scan directories contain everything necessary

Description

checkInput - This function checks a set of root scan directories if they each contain two pictures,
X.segmentation.png and X.skeleton.png, where X is the name of the directory.

Usage

checkInput(data_dir = NULL, data_dirs = NULL)

Arguments

data_dir (Optional, default = NULL) String specifying the name (full path) of the direc-
tory (full path) containing all root scan directories of interest.

data_dirs (Optional, default = NULL) Character vector specifying all of the individual
root scan directories of interest (full paths). This is only used if data_dir is set
to NULL.

Value

checkInput A list containing two TRUE-FALSE-vectors showing if the root scan directories each
contain the two root pictures.

cm2px 3

Examples

Replace NULL with path to directory.
DATA_DIR <- NULL
Apply the function directly...
cI1 <- checkInput(data_dir = DATA_DIR)
... or use it in combination with \code{getOverviewInput}:
cI2 <- checkInput(data_dirs = getOverviewInput(data_dir = DATA_DIR,

naming_conv = "standard")$dir_name_full)

cm2px Functions for converting pixels and centimeters

Description

cm2px - Converts centimeters to pixels.

px2cm - Converts pixels to centimeters.

Usage

cm2px(cm, ppcm = NULL, ppi = NULL)

px2cm(px, ppcm = NULL, ppi = NULL)

Arguments

cm Numeric value or numeric vector (centimeters) to be converted to pixels.

ppcm Numeric value or numeric vector (default NULL) of the same length as cm or px
specifying how many pixels there are per centimeter. If ppcm is not NULL, ppi
is ignored.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

ppi Numeric value or numeric vector (default NULL) of the same length as cm or px
specifying how many pixels there are per inch. Set ppcm to NULL to use ppi.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

px Numeric value or numeric vector (pixels) to be converted to centimeters.

Value

cm2px Numeric value or numeric vector (pixels).

px2cm Numeric value or numeric vector (centimeters).

Examples

cm2px(2, 4)
px2cm(2, 4)

4 createDepthLayerMasks

combineStatsWithDL Get an overview of the given root scans

Description

combineStatsWithDL - This function goes through a set of image directories and combines all
existing statistics_withDepthLayers.csv-files into one data frame, that is optionally saved as a csv.

Usage

combineStatsWithDL(data_dir, data_dirs = NULL, out_file = NA)

Arguments

data_dir (Optional, default = NULL) String specifying the name (full path) of the direc-
tory containing all image directories of interest.

data_dirs (Optional, default = NULL) Character vector specifying all of the individual
root scan directories of interest. This is only used if data_dir is set to NULL.

out_file (Optional, default = NA) Full path of the output-csv-file. If set to NULL, no
output file is created. If its is set to NA and data_dir is not NULL, then the
output file all_statistics_withDepthLayers.csv is created in data_dir.

Value

combineStatsWithDL A data frame containing the combined depth layer information of the images.

Examples

combineStatsWithDL(data_dir = NULL, out_file = NULL)

createDepthLayerMasks Create masking layers for the depth layers

Description

createDepthLayerMasks - Creates a masking layer, i.e., a true/false-matrix, indicating which pix-
els of an image belong to a specified depth layer.
We assume the image was taken inside a minirhizotron, a round plexiglas tube used to observe roots
in the ground, and shows a 360 degree scan of a section of the tube. As the minirhizotron is installed
at an angle (can be specified, by default 45 degrees) a depth layer in the ground is shown as a sinus
curve in the scan.

dissectionLine - Returns the y-value of the dissection line of a tube that was positioned at an
angle for a given position x. The dissection line is dependent on the minpoint, the angle, and the
radius of the tube (have to be specified).

createDepthLayerMasks 5

Usage

createDepthLayerMasks(
ppcm = NULL,
ppi = NULL,
dims_px,
depth_levels_cm = rbind(c(0, -10), c(-10, -20), c(-20, -30), c(-30, -40)),
depth_highpoint_cm = 0,
pos_highpoint_px = "center",
angle = 45,
top_side = "top",
gap_cm = 0,
gap_deg = 0

)

dissectionLine(x, minpoint, angle, radius)

Arguments

ppcm Numeric value specifying how many pixels there are per centimeter (resolution
of the image). Default NULL. If ppcm is not NULL or NA, ppi is ignored.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

ppi Numeric value specifying how many pixels there are per inch (resolution of the
image). Default NULL. Leave/set ppcm to NULL or NA to use ppi.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

dims_px Integer vector of length two specifying the dimensions of the image/mask layer
(in pixels).

depth_levels_cm

Numeric matrix with two columns and at least one row. Each row specifies a
depth interval (in cm) that is of interest. For each interval a masking layer is
generated. The first value of each row has to be larger than the second (decend-
ing).
By default: Depth layers Depth layers 0-(-10)cm, -10-(-20)cm, -20-(-30)cm, and
-30-(-40)cm.

depth_highpoint_cm

Numeric value specifying the depth at which the highest point of the image is
(in cm). By default this is at depth 0.
More precisely, this refers to the depth of the middle of the pixel in the first row
of the top_side of the image.

pos_highpoint_px

Either one of "center" or "edge" (default), indicating that scanning starts at the
bottom or top facing side of the minirhizotron, respectively, or it can also be
an integer value (>=1 and <=width of the top_side of the image) specifying
where (left<->right) in the top row of the image the highest point of the image
lies, indicating the column where the minimum points of the depth-level lines
lie.

6 createDepthLayerMasks

"edge" is equivalent to using 1 or width of the top_side and "center" to using
half the width of the top_side.
See also gap_cm if there is a non-zero gap.

angle Numeric value >=0 and <=90 (default 45) specifying the installation angle of
the minirhizotron in degrees (angle between the ground and the tube above the
soil).

top_side One of "left","top" (default),"right","bottom". Indicates where the upper side of
the image is.

gap_cm Numeric value (default 0) that specifies if there is a gap (in cm) between the
two "matching" sides of the image, i.e., there is no full rotation of the scanner.
If pos_highpoint_px is specified as "center" or "edge" (in characters), then
it is assumed that the middle of the gap is right at the top or bottom facing
side of the tube, i.e. it is not possible to start and end at the exact top/bottom.
If pos_highpoint_px is specified as a numeric value, then it is considered as
exact and the gap does not move it.

gap_deg Numeric value (default 0) that specifies if there is a gap (in degrees, i.e. from
0 to 360) between the two "matching" sides of the image, i.e., there is no full
rotation of the scanner. Works similar to gap_cm. Example: If the scanner scans
only 355 degrees, then set the value to 5. gap_deg is only used if gap_cm is NA.

x Numeric value indicating the position.

minpoint Numeric vector of length 2 indicating the coordinates of the minimum point of
the function.

radius Positive numeric value indicating the radius of the tube.

Value

createDepthLayerMasks A list of 2-dimensional true/false-matrices with the specified dimensions
(see dims). True indicates that the corresponding pixel belongs to the specified depth layer. The list
contains nrow(depth_levels_cm)-many matrices, one for each specified depth layer.

dissectionLine

Examples

Small example for creating a masking layer of a single depth interval:
createDepthLayerMasks(ppcm = 1, dims_px = c(10,10),

depth_levels_cm = matrix(c(-3,-5), ncol = 2))[[1]]
Change some parameters to adapt to a different minimum point position and
installation angle.
createDepthLayerMasks(ppcm = 1, dims_px = c(5,7),

depth_levels_cm = matrix(c(-1.5,-2.5), ncol = 2),
pos_highpoint_px = "center", gap_cm = 0)[[1]]

And here is a cutout of that mask using a gap.
createDepthLayerMasks(ppcm = 1, dims_px = c(5,5),

depth_levels_cm = matrix(c(-1.5,-2.5), ncol = 2),
pos_highpoint_px = "center", gap_cm = 2)[[1]]

Examples how different angles result in different dissection graphs:
test_x <- -12:12
plot(test_x, sapply(X=test_x, function(X){

findAvgOverlap 7

dissectionLine(x=X, minpoint = c(0,0), angle = 45,
radius = 3)}),

ylim = c(0, 20))
plot(test_x, sapply(X=test_x, function(X){

dissectionLine(x=X, minpoint = c(0,0), angle = 80,
radius = 3)}),

ylim = c(0, 20))
plot(test_x, sapply(X=test_x, function(X){

dissectionLine(x=X, minpoint = c(0,0), angle = 10,
radius = 3)}),

ylim = c(0, 20))

findAvgOverlap Find average image overlaps

Description

findAvgOverlap - This function looks at several sets of images, which overlap in the same way,
for example the root scans (with more than one depth window) of the same minirhizotron. It then
computes the best overlap between each pair of consecutive images (see parameters for more details
on the method) for each set of images. The best results are then found for each image transition
across all image sets depending based on the correlation values.

Usage

findAvgOverlap(
list_img_paths = NULL,
list_imgs = NULL,
overlap_px = NULL,
max_shift_px = NULL,
perc_better_per_px = 0.01,
corr_formula = "1-rel_eucl_diff_colors",
stitch_direction = "left_to_right"

)

Arguments

list_img_paths (Optional, default = NULL) List containing several character vector specifying
all of the individual image paths of interest. Each vector must contain the same
number of image paths with the images all having the same dimensions. This is
only used if list_imgs is set to NULL.

list_imgs List of lists of images (e.g., provided by the RootDetector). Each sublist must
contain the same number of images with the same dimensions. Each image can
be a PNG, i.e., an array with 3 dimensions (3 layers each containing a 2-dim.
numeric matrix with values between 0 and 1), or a 2-dim. matrix.

8 findAvgOverlap

overlap_px Numeric vector (default NULL) specifying the (likely) widths of the overlaps
between two consecutive images. The vector must have one element less than
there are images and must not contain any negative values. If NULL, it is set to
1’s.

max_shift_px Numeric vector (default NULL) specifying the maximal deviation in pixels from
the overlap_px, i.e., all possible overlaps in that range from the likely overlap
are compared and the best is chosen if it is better than the overlap_px (see also
perc_better_per_px). If overlap_px is already exact, then set max_shift_px
to zero(s). If at NULL, it is set to 10 percent of the image widths.

perc_better_per_px

Numeric value (percentage, default 0.01, i.e., 1 percent) specifying how much
better the correlation of an overlap must be than the overlap_px per pixel dif-
ference, to be selected instead. See findOverlap() for more details. The cor-
responding threshold correlation values are only reported, but do not affect the
computation of the average/best overlaps.

corr_formula Character value specifying the formula to be used (by default 1) for calculating
how good an overlap of two images is, i.e., how similar the two overlapping
images are. Available are the following formulas:

• "frac_matches_rgb_intensities": Fraction of matching intensities over all
three color channels. Only suitable for images with few unique colors.
Ranges from 0 (no matches) to 1 (full match).

• "frac_matches_colors": Fraction of matching colors in the images. Only
suitable for images with few unique colors. Ranges from 0 (no matches) to
1 (full match).

• "weighted_matches_b_w": Counts the matches of black and white pixels
and weighs them anti-proportional to the black and white pixel frequen-
cies. Both black and white make up half of the correlation score. Only
suitable for images with mostly pure black and white pixels. Ranges from
0 (no matches) to 1 (full match).

• "weighted_matches_colors": Counts the matches per unique color and weighs
them anti-proportional to the frequencies of the colors. Each unique color
makes up the same fraction of the correlation score. Only suitable for im-
ages with few unique colors. Ranges from 0 (no matches) to 1 (full match).

• "1-rel_sqrd_diff_rgb_intensities": One minus the relative squared differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

• "1-rel_abs_diff_rgb_intensities": One minus the relative absolute differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

findAvgSurface 9

• "1-rel_eucl_diff_colors" (default): One minus the relative Euclidean differ-
ences of colors. Ranges from 0 (no matches) to 1 (full match).

stitch_direction

Character specifying in which order the images should be stitched. Available
are: ’left_to_right’ (default), ’right_to_left’, ’top_to_bottom’, and ’bottom_to_top’.

Value

findAvgOverlap List containing the best overlaps, i.e., a numeric vector containing the best (ac-
cording to the parameters) widths of the overlaps between the consecutive images (this vector has
one element less than there are images) as well as a list containing all possible overlap information
per image set.

Examples

Example of finding the best overlap of two sets of two matrices.
overlap <- findAvgOverlap(list_imgs = list(

list(matrix(c(1,0,0,0,
0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3,

byrow = TRUE),
matrix(c(0,0,0,0,

1,0,0,1,
0,1,1,0), ncol = 4, nrow = 3,

byrow = TRUE)),
list(matrix(c(0,0,0,0,

0,0,0,0,
0,0,1,1), ncol = 4, nrow = 3,

byrow = TRUE),
matrix(c(0,0,0,0,

0,0,0,0,
1,1,1,0), ncol = 4, nrow = 3,

byrow = TRUE))),
overlap_px = 1, max_shift_px = 2,
corr_formula = "weighted_matches_b_w")

overlap$best_overlaps

findAvgSurface Find the average surface level

Description

findAvgSurface - This function looks at several images which should have the same surface level,
for example the root scans (topmost depth window) of the same minirhizotron. Then, the best
position of the surface level is determined by finding the best across all images.

10 findAvgSurface

Usage

findAvgSurface(
img_paths = NULL,
imgs = NULL,
surface_col = "red",
pos_highpoint_px = "center",
radius_highpoint_px = 10,
angle = 45,
top_side = "left",
ppcm = NULL,
ppi = NULL

)

Arguments

img_paths (Optional, default = NULL) Character vector specifying all of the individual
image paths of interest. This is only used if imgs is set to NULL.

imgs List of images (e.g., provided by the RootDetector). Each image can be a PNG,
i.e., an array with 3 dimensions (3 layers each containing a 2-dim. numeric
matrix with values between 0 and 1), or a 2-dim. matrix.

surface_col Color of the area to be split of the mask (default "red"). Can be of any of the three
kinds of R color specifications, i.e., either a color name (as listed by colors()), a
hexadecimal string (see Details), or a positive integer (indicates using palette()).

pos_highpoint_px

Either one of "center" or "edge" (default), indicating that scanning starts at the
bottom or top facing side of the minirhizotron, respectively, or it can also be
an integer value (>=1 and <=width of the top_side of the image) specifying
where (left<->right) in the top row of the image the highest point of the image
lies, indicating the column where the minimum points of the depth-level lines
lie.
"edge" is equivalent to using 1 or width of the top_side and "center" to using
half the width of the top_side.

radius_highpoint_px

The radius specifying how large the are should be to determine the split (default
10).

angle Numeric value >=0 and <=90 (default 45) specifying the installation angle of
the minirhizotron in degrees (angle between the ground and the tube above the
soil).

top_side One of "left","top" (default),"right","bottom". Indicates where the upper side of
the image is.

ppcm Numeric value specifying how many pixels there are per centimeter (resolution
of the image). Default NULL. If ppcm is not NULL or NA, ppi is ignored.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

ppi Numeric value specifying how many pixels there are per inch (resolution of the
image). Default NULL. Leave/set ppcm to NULL or NA to use ppi.

findOverlap 11

Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

Value

findAvgSurface A list with the two values ’pos_surf_px’ and ’depth_highpoint_cm’, and a matrix
’all_split_info’ containing the information on all possible splits.

Examples

Example of finding the best overlap of two sets of two matrices.
mat_R <- matrix(c(1,1,1,1,1,

0,1,1,1,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_G <- matrix(c(0,0,0,0,1,
0,1,0,0,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_G2 <- matrix(c(0,0,0,1,0,
0,0,0,0,0,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_B <- matrix(c(0,0,0,0,1,
0,0,0,0,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_B2 <- matrix(c(0,0,0,0,0,
0,1,0,0,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

surface <- findAvgSurface(imgs = list(
array(c(mat_R,mat_G,mat_B), dim = c(dim(mat_R),3)),
array(c(mat_R,mat_G2,mat_B), dim = c(dim(mat_R),3)),
array(c(mat_R,mat_G,mat_B2), dim = c(dim(mat_R),3))),

radius_highpoint_px = 2, top_side = "top", ppcm = 1)

findOverlap Find image overlaps

Description

findOverlap - This function searches for the best overlap between each pair of consecutive images
(see parameters for more details on the method).

imageCorr - This function computes the similarity/correlation of two images.

Usage

findOverlap(
img_paths = NULL,
imgs = NULL,
overlap_px = NULL,
max_shift_px = NULL,
perc_better_per_px = 0.01,

12 findOverlap

corr_formula = "1-rel_eucl_diff_colors",
stitch_direction = "left_to_right",
return_all_results = FALSE,
show_messages = TRUE

)

imageCorr(
img_paths = NULL,
imgs = NULL,
corr_formula = "1-rel_eucl_diff_colors"

)

Arguments

img_paths (Optional, default = NULL) Character vector specifying all of the individual im-
age paths of interest. This is only used if imgs is set to NULL. For ImageCorr()
it must have length 2.

imgs List of images (e.g., provided by the RootDetector). Each image can be a PNG,
i.e., an array with 3 dimensions (3 layers each containing a 2-dim. numeric
matrix with values between 0 and 1), or a 2-dim. matrix. For ImageCorr() it
must have length 2.

overlap_px Numeric vector (default NULL) specifying the (likely) widths of the overlaps
between two consecutive images. The vector must have one element less than
there are images and must not contain any negative values. If NULL, it is set to
1’s.

max_shift_px Numeric vector (default NULL) specifying the maximal deviation in pixels from
the overlap_px, i.e., all possible overlaps in that range from the likely overlap
are compared and the best is chosen if it is better than the overlap_px (see also
perc_better_per_px). If overlap_px is already exact, then set max_shift_px
to zero(s). If at NULL, it is set to 5 percent of the image widths.

perc_better_per_px

Numeric value (percentage, default 0.01, i.e., 1 percent) specifying how much
better the correlation of an overlap must be than the overlap_px per pixel dif-
ference, to be selected instead. If set to 0, the overall best correlation determines
the overlap. Example: If set to 0.01 = 1 percent, an overlap being 4 pixels away
from the specified overlap_px must have a correlation better/higher than 1.01^4
times the correlation value of overlap_px to be chosen as the better overlap.

corr_formula Character value specifying the formula to be used (by default 1) for calculating
how good an overlap of two images is, i.e., how similar the two overlapping
images are. Available are the following formulas:

• "frac_matches_rgb_intensities": Fraction of matching intensities over all
three color channels. Only suitable for images with few unique colors.
Ranges from 0 (no matches) to 1 (full match).

• "frac_matches_colors": Fraction of matching colors in the images. Only
suitable for images with few unique colors. Ranges from 0 (no matches) to

findOverlap 13

1 (full match).

• "weighted_matches_b_w": Counts the matches of black and white pixels
and weighs them anti-proportional to the black and white pixel frequen-
cies. Both black and white make up half of the correlation score. Only
suitable for images with mostly pure black and white pixels. Ranges from
0 (no matches) to 1 (full match).

• "weighted_matches_colors": Counts the matches per unique color and weighs
them anti-proportional to the frequencies of the colors. Each unique color
makes up the same fraction of the correlation score. Only suitable for im-
ages with few unique colors. Ranges from 0 (no matches) to 1 (full match).

• "1-rel_sqrd_diff_rgb_intensities": One minus the relative squared differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

• "1-rel_abs_diff_rgb_intensities": One minus the relative absolute differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

• "1-rel_eucl_diff_colors" (default): One minus the relative Euclidean differ-
ences of colors. Ranges from 0 (no matches) to 1 (full match).

stitch_direction

Character specifying in which order the images should be stitched. Available
are: ’left_to_right’ (default), ’right_to_left’, ’top_to_bottom’, and ’bottom_to_top’.

return_all_results

Specify if all checked overlaps with their respective correlation score should be
returned (default FALSE).

show_messages Specify if messages should be depicted (default TRUE).

Value

findOverlap Numeric vector containing the best (according to the parameters) widths of the over-
laps between the consecutive images. The vector has one element less than there are images. Its
attribute "corr" holds the respective correlation value. If return_all_results is set to true, a list
containing a 3-column-matrix for each element in the above mentioned vector, is returned, i.e, for
each transition of two consecutive images we have the first column containing the overlaps in pixel,
the second column holding the respective correlation values, and the third holding the threshold
correlation values accoriding to overlap_px and perc_better_per_px.

imageCorr Numeric value (correlations score).

Examples

Example of finding the best overlap of two matrices.
overlap <- findOverlap(imgs = list(matrix(c(1,0,0,0,

0,1,0,0,

14 findSurface

0,0,1,1), ncol = 4, nrow = 3,
byrow = TRUE),

matrix(c(0,0,0,0,
1,0,0,1,
0,1,1,0), ncol = 4, nrow = 3,

byrow = TRUE)),
overlap_px = 1, max_shift_px = 2,
return_all_results = TRUE)

Example of computing the similarity of two images/matrices.
imageCorr(imgs = list(matrix(c(1,0,0,1,

1,1,1,1,
0,1,1,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(1,0,0,0,
1,1,1,1,
0,1,1,1), ncol = 4, nrow = 3, byrow = TRUE)),

corr_formula = "weighted_matches_colors")

findSurface Find the surface level and split images

Description

findSurface - This function finds the best split of an image with a horizontal or vertical line into
one color (often red, e.g., for the surface) and other colors (often black and white, e.g., for everything
in the ground). This works for any images. For the application on minirhizotron root scans the func-
tion provides the additional functionality of using the installation angle of the minirhizotron and the
resolution of the image to not only return the position of the line in pixels, but also the correspond-
ing depth in cm of the highest point of the top side of the image, also called depth_highpoint_cm
in other function of this package.

splitImgHoriz - This function finds the best split of an image with a horizontal line into one color
on the top half (often red, e.g., for the surface) and other colors on the bottom half (often black and
white, e.g., for everything in the ground). This works for any images.
Currently, the best split is determined as the one where there are the most equal mismatches on both
sides, i.e., the same number of pixels in the top part of the image which have not the specified color
as pixels in the bottom part of the image which have this specific color.

Usage

findSurface(
img_path = NULL,
img = NULL,
surface_col = "red",
pos_highpoint_px = "center",
radius_highpoint_px = 10,
angle = 45,
top_side = "left",
ppcm = NULL,
ppi = NULL,

findSurface 15

return_all_results = FALSE
)

splitImgHoriz(img, surface_col = "red", return_all_results = FALSE)

Arguments

img_path (Optional, default = NULL) Character vector specifying the image path of inter-
est. This is only used if img is set to NULL.

img Image (e.g., provided by the RootDetector) in the form of an array with 3 dimen-
sions for the RGB color channels (3 layers each containing a 2-dim. numeric
matrix with values between 0 and 1).

surface_col Color of the area to be split of the mask (default "red"). Can be of any of the three
kinds of R color specifications, i.e., either a color name (as listed by colors()), a
hexadecimal string (see Details), or a positive integer (indicates using palette()).

pos_highpoint_px

Either one of "center" or "edge" (default), indicating that scanning starts at the
bottom or top facing side of the minirhizotron, respectively, or it can also be
an integer value (>=1 and <=width of the top_side of the image) specifying
where (left<->right) in the top row of the image the highest point of the image
lies, indicating the column where the minimum points of the depth-level lines
lie.
"edge" is equivalent to using 1 or width of the top_side and "center" to using
half the width of the top_side.

radius_highpoint_px

The radius specifying how large the are should be to determine the split (default
10).

angle Numeric value >=0 and <=90 (default 45) specifying the installation angle of
the minirhizotron in degrees (angle between the ground and the tube above the
soil).

top_side One of "left","top" (default),"right","bottom". Indicates where the upper side of
the image is.

ppcm Numeric value specifying how many pixels there are per centimeter (resolution
of the image). Default NULL. If ppcm is not NULL or NA, ppi is ignored.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

ppi Numeric value specifying how many pixels there are per inch (resolution of the
image). Default NULL. Leave/set ppcm to NULL or NA to use ppi.
Examples: 300 ppi (printing) is 118 ppcm, 150 ppi is 59 ppcm, 72 ppi (screens)
is 28 ppcm.

return_all_results

Specify if all checked overlaps with their respective correlation score should be
returned (default FALSE).

16 getDepthLayerInfo

Value

findSurface A list with following features: ’pos_surf_px’ and ’depth_highpoint_cm’. If return_all_results
is set to true, a list also comprises a matrix ’split_info’ containing the information on all possible
splits.

splitImgHoriz An integer value. The row where the upper "surface" part of the image starts
(the row included). Called ’pos_surf_px’ in the return value of the function findSurface(). If
return_all_results is set to true, a list containing this best value ’best_split’ as well as a matrix
’split_info’ containing the information on all possible splits is returned instead.

Examples

Example of finding the best row to horizontally split the image at the
highpoint position.
mat_R <- matrix(c(1,1,1,1,1,

0,1,1,1,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_G <- matrix(c(0,0,0,0,1,
0,1,0,0,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

mat_B <- matrix(c(0,0,0,0,1,
0,1,0,0,1,
0,0,1,1,1), ncol = 5, nrow = 3, byrow = TRUE)

findSurface(img = array(c(mat_R,mat_G,mat_B), dim = c(dim(mat_R),3)),
radius_highpoint_px = 1, top_side = "top", ppcm = 1,
return_all_results = TRUE)

Example of finding the best row to horizontally split the image.
Note that the top row and one pixel in the second row is red. All others
are either black or white.
mat_R <- matrix(c(1,1,1,1,

0,1,0,1,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE)

mat_G <- matrix(c(0,0,0,0,
0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE)

mat_B <- matrix(c(0,0,0,0,
0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE)

splitImgHoriz(img = array(c(mat_R,mat_G,mat_B), dim = c(dim(mat_R),3)),
return_all_results = TRUE)

getDepthLayerInfo Extract depth layer information from root scans

Description

getDepthLayerInfo - Specify a set of root scan directories in the form of a data frame (e.g., by
using getOverviewInput()). Then, the function will do the following:

getDepthLayerInfo 17

• If there are several depth windows of the same root scan (project, tube, date and session have
to be identical), then these will be stitched and saved in directory of the scan of depth window
1.

• Create depth layer masks corresponding to the specified depth_levels_cm.

• Computes a range of values from the scans (per depth layer: "pixels_root", "pixels_bg",
"skel_pixels_total", "skel_pixels_low3", "skel_pixels_3-7", "skel_pixels_larg7","kimura_length6")
and if (save_csvs = TRUE) saves them as a csv file in the directory of the scan of depth win-
dow 1.

• Returns a data frame containing values listed above of all scans.

Usage

getDepthLayerInfo(
root_df = NULL,
depth_levels_cm = rbind(c(0, -10), c(-10, -20), c(-20, -30), c(-30, -40)),
overwrite = FALSE,
save_csvs = TRUE,
save_pngs_col = "grey"

)

Arguments

root_df Data frame (default = NULL) specifying the structure of the root scan data. It
can be created using the function getOverviewInput(). The data frame must
contain several mandatory features and can comprise other optional features,
some of which have a functional importance and others have no influence but
will be included in the output data frame). Any feature not listed here is treated
as completely optional:

• ————— Mandatory —————

• dir_name_full: Full path to directory.

• dir_name: name of directory.

• depth_window: depth-level/window. 1 indicates the scan highest scan, 2
the next scan somewhat lower in ground, and so forth.

• ——– Optional, but functionally important ——–

• top_side: One of "left","top","right","bottom". Indicates where the upper
side of the image is. If not specified, "left" is used.

18 getDepthLayerInfo

• tube_angle: Installation angle of the tube (angle between surface plane
and tube above ground, in degrees, >0 and <90). If not specified, an angle
of 45 degrees is assumed.

• depth_highpoint_cm: Depth in cm of the highest point in the image, e.g.,
0 indicating that the top border of the scan scratched the surface of the soil
or -5 indicating that it lies 5 cm deep in the soil. This is mostly important
for all scans of depth_window 1 (or the lowest number if the depth win-
dows are not 1,2,3,4,...) if all images are stitched together. If not specified,
it is assumed that the top border of scan of depth_window 1 lies at depth 0.

• pos_highpoint_px: Either one of "center" or "edge", indicating that scan-
ning starts at the bottom or top facing side of the minirhizotron, respec-
tively, or it can also be an integer value (>=1 and <=width of the top_side
of the image) specifying where (left<->right) in the top row of the image
the highest point of the image lies, indicating the column where the mini-
mum points of the depth-level lines lie.
If not specified, "center" is assumed as scanning often starts at the bottom
facing side of the minirzhizotron.
See also gap_cm if there is a non-zero gap.

• ppcm Pixels per centimeter, the resolution of the image. If not specified
(NULL or NA), ppi is used. Common resolutions are 300 ppi (or dpi, for
print jobs) which is 118 px/cm, 150 ppi which is 59 px/cm, and 72 ppi (for
screens) which is 28 px/cm.

• ppi Pixels per inch, the resolution of the image. If ppcm and ppi arenot
specified, 300 ppi is used. Common resolutions are 300 ppi (or dpi, for
print jobs) which is 118 px/cm, 150 ppi which is 59 px/cm, and 72 ppi (for
screens) which is 28 px/cm.

• overlap_px Overlap in pixels of the current image and the image of the
previous depth window for the stitching process, i.e., this is not important
for the image of the first depth window. While stitching it will be checked
if there is a better overlap in a small area around the specified value (see
max_shift_px). If not specified it is set to 1’s.

• max_shift_px Radius around overlap_px that is checked for better over-
lap matching. If not specified it is set to 0 (no alternatives are checked).

• gap_cm Numeric value that specifies if there is a gap (in cm) between the
two "matching" sides of the image, i.e., there is no full rotation of the scan-
ner. If pos_highpoint_px is specified as "center" or "edge" (in characters),
then it is assumed that the middle of the gap is right at the top or bottom
facing side of the tube, i.e. it is not possible to start and end at the exact
top/bottom. If pos_highpoint_px is specified as a numeric value, then it
is considered as exact and the gap does not move it.

getDepthLayerInfo 19

If not specified and if gap_deg is NA as well, no gap (0) is assumed.

• gap_deg Numeric value that specifies if there is a gap (in degrees, i.e. from
0 to 360) between the two "matching" sides of the image, i.e., there is no
full rotation of the scanner. Works similar to gap_cm. Only used if gap_cm
is not specified.

• project: Project name. Needed to identify scans that should be stitched.

• tube: ID of the minirhizotron. Needed to identify scans that should be
stitched.

• date: Date of the scanning. Needed to identify scans that should be stitched.

• session: ID of the scan session. Needed to identify scans that should be
stitched.

• ———— Completely optional ————

• ID: ID of the scan (6 digits) or timecode.

• operator: ID of the person that scanned the root.

• file_extension: File format: png, tiff, jpg, or jpeg (upper or lowercase).

depth_levels_cm

Numeric matrix with two columns and at least one row. Each row specifies a
depth interval (in cm) that is of interest. For each interval a masking layer is
generated. The first value of each row has to be larger than the second (decend-
ing).
By default: Depth layers 0-(-10)cm, -10-(-20)cm, -20-(-30)cm, and -30-(-40)cm.

overwrite If FALSE (default), root scan directories are skipped that have already been
processed by a particular procedure, i.e., there already are stitched images before
beginning the stitching procedure, there already are images with depth layers
drawn in before saving thme or there already is a statistics_withDepthLayers.csv
file when it comes to evaluating the image. If TRUE, all procedures are applied
to the scan and corresponding files are overwritten.

save_csvs Specifies if csv files for the individual scans should be saved in the scan’s direc-
tory (default TRUE).

save_pngs_col If not NULL, the root scans with depth layers drawn in are saved in the scan’s
directory. Specifies the color of the FALSE-regions of the mask (default "grey").
Can be a vector of the same length as the number of depth intervals to allow each
layer to be drawn in with a different color.
Can be of any of the three kinds of R color specifications, i.e., either a color
name (as listed by colors()), a hexadecimal string (see Details), or a positive
integer (indicates using palette()).

20 getDepthLayerInfo_par

Value

getDepthLayerInfo A data frame containing the depth layer information of all individual scans.

Examples

getDepthLayerInfo()

getDepthLayerInfo_par Extract depth layer information from root scans (parallel)

Description

getDepthLayerInfo_par - Specify a set of root scan directories in the form of a data frame (e.g.,
by using getOverviewInput()). Then, the function will do the following:

• If there are several depth windows of the same root scan (project, tube, date and session have
to be identical), then these will be stitched and saved in directory of the scan of depth window
1.

• Create depth layer masks corresponding to the specified depth_levels_cm.

• Computes a range of values from the scans (per depth layer: "pixels_root", "pixels_bg",
"skel_pixels_total", "skel_pixels_low3", "skel_pixels_3-7", "skel_pixels_larg7","kimura_length6")
and if (save_csvs = TRUE) saves them as a csv file in the directory of the scan of depth win-
dow 1.

• Returns a data frame containing values listed above of all scans.

Usage

getDepthLayerInfo_par(
root_df = NULL,
depth_levels_cm = rbind(c(0, -10), c(-10, -20), c(-20, -30), c(-30, -40)),
overwrite = FALSE,
save_csvs = TRUE,
save_pngs_col = "grey",
core_number = 1L

)

Arguments

root_df Data frame (default = NULL) specifying the structure of the root scan data. It
can be created using the function getOverviewInput(). The data frame must
contain several mandatory features and can comprise other optional features,
some of which have a functional importance and others have no influence but

getDepthLayerInfo_par 21

will be included in the output data frame). Any feature not listed here is treated
as completely optional:

• ————— Mandatory —————

• dir_name_full: Full path to directory.

• dir_name: name of directory.

• depth_window: depth-level/window. 1 indicates the scan highest scan, 2
the next scan somewhat lower in ground, and so forth.

• ——– Optional, but functionally important ——–

• top_side: One of "left","top","right","bottom". Indicates where the upper
side of the image is. If not specified, "left" is used.

• tube_angle: Installation angle of the tube (angle between surface plane
and tube above ground, in degrees, >0 and <90). If not specified, an angle
of 45 degrees is assumed.

• depth_highpoint_cm: Depth in cm of the highest point in the image, e.g.,
0 indicating that the top border of the scan scratched the surface of the soil
or -5 indicating that it lies 5 cm deep in the soil. This is mostly important
for all scans of depth_window 1 (or the lowest number if the depth win-
dows are not 1,2,3,4,...) if all images are stitched together. If not specified,
it is assumed that the top border of scan of depth_window 1 lies at depth 0.

• pos_highpoint_px: Either one of "center" or "edge", indicating that scan-
ning starts at the bottom or top facing side of the minirhizotron, respec-
tively, or it can also be an integer value (>=1 and <=width of the top_side
of the image) specifying where (left<->right) in the top row of the image
the highest point of the image lies, indicating the column where the mini-
mum points of the depth-level lines lie.
If not specified, "center" is assumed as scanning often starts at the bottom
facing side of the minirzhizotron.
See also gap_cm if there is a non-zero gap.

• ppcm Pixels per centimeter, the resolution of the image. If not specified
(NULL or NA), ppi is used. Common resolutions are 300 ppi (or dpi, for
print jobs) which is 118 px/cm, 150 ppi which is 59 px/cm, and 72 ppi (for
screens) which is 28 px/cm.

• ppi Pixels per inch, the resolution of the image. If ppcm and ppi arenot
specified, 300 ppi is used. Common resolutions are 300 ppi (or dpi, for
print jobs) which is 118 px/cm, 150 ppi which is 59 px/cm, and 72 ppi (for

22 getDepthLayerInfo_par

screens) which is 28 px/cm.

• overlap_px Overlap in pixels of the current image and the image of the
previous depth window for the stitching process, i.e., this is not important
for the image of the first depth window. While stitching it will be checked
if there is a better overlap in a small area around the specified value (see
max_shift_px). If not specified it is set to 1’s.

• max_shift_px Radius around overlap_px that is checked for better over-
lap matching. If not specified it is set to 0 (no alternatives are checked).

• gap_cm Numeric value that specifies if there is a gap (in cm) between the
two "matching" sides of the image, i.e., there is no full rotation of the scan-
ner. If pos_highpoint_px is specified as "center" or "edge" (in characters),
then it is assumed that the middle of the gap is right at the top or bottom
facing side of the tube, i.e. it is not possible to start and end at the exact
top/bottom. If pos_highpoint_px is specified as a numeric value, then it
is considered as exact and the gap does not move it.
If not specified and if gap_deg is NA as well, no gap (0) is assumed.

• gap_deg Numeric value that specifies if there is a gap (in degrees, i.e. from
0 to 360) between the two "matching" sides of the image, i.e., there is no
full rotation of the scanner. Works similar to gap_cm. Only used if gap_cm
is not specified.

• project: Project name. Needed to identify scans that should be stitched.

• tube: ID of the minirhizotron. Needed to identify scans that should be
stitched.

• date: Date of the scanning. Needed to identify scans that should be stitched.

• session: ID of the scan session. Needed to identify scans that should be
stitched.

• ———— Completely optional ————

• ID: ID of the scan (6 digits) or timecode.

• operator: ID of the person that scanned the root.

• file_extension: File format: png, tiff, jpg, or jpeg (upper or lowercase).
depth_levels_cm

Numeric matrix with two columns and at least one row. Each row specifies a
depth interval (in cm) that is of interest. For each interval a masking layer is
generated. The first value of each row has to be larger than the second (decend-

getNeighborCoords 23

ing).
By default: Depth layers 0-(-10)cm, -10-(-20)cm, -20-(-30)cm, and -30-(-40)cm.

overwrite If FALSE (default), root scan directories are skipped that have already been
processed by a particular procedure, i.e., there already are stitched images before
beginning the stitching procedure, there already are images with depth layers
drawn in before saving thme or there already is a statistics_withDepthLayers.csv
file when it comes to evaluating the image. If TRUE, all procedures are applied
to the scan and corresponding files are overwritten.

save_csvs Specifies if csv files for the individual scans should be saved in the scan’s direc-
tory (default TRUE).

save_pngs_col If not NULL, the root scans with depth layers drawn in are saved in the scan’s
directory. Specifies the color of the FALSE-regions of the mask (default "grey").
Can be a vector of the same length as the number of depth intervals to allow each
layer to be drawn in with a different color.
Can be of any of the three kinds of R color specifications, i.e., either a color
name (as listed by colors()), a hexadecimal string (see Details), or a positive
integer (indicates using palette()).

core_number Integer value specifying the bumber of cores (default = 1) used in parallelized
procedures.

Value

getDepthLayerInfo_par A data frame containing the depth layer information of all individual
scans.

Examples

getDepthLayerInfo_par()

getNeighborCoords Get coordinates of neighbors of specified distance

Description

getNeighborCoords - Returns coordinates of all pixels in a two dimensional raster/image/... with a
specified Euclidean distance from the center, i.e., a pixel circle, either a ring or the whole area with
a specified radius.

Usage

getNeighborCoords(
center,
radius,
dims_px = c(1000, 1000),
type = "ring",
tol = "strict",
tol_val = 0.5

)

24 getOverviewInput

Arguments

center Numeric vector of length two specifying the coordinates (in pixels) of the center
point.

radius Integer value specifying the radius (in pixels). A radius of 0 returns only the
center point itself.

dims_px Numeric vector of length two (default: 1,000 x 1,000) specifying the dimensions
(in pixels). Neighbors outside are ignored.

type Character, "ring" (default) or "area", specifying if the pixel coordinates of only
the outer ring or of the whole circle area should be returned.

tol Character, "strict" (default) or "loose", specifying how thick the ring/outer edge
of the area should be, i.e., if pixels close but not exactly on the circle should be
included. If set to "loose", all pixels that touch the circle are included. If set to
"strict", only additional pixels whose centers have a distance of at most tol_val
to the circle are included.

tol_val Numeric value specifying the tolerance value (>=0,<1, default: 0.5), i.e., pixels
are considered neighbors if the difference between their Euclidean distance to
the center and the radius is less than or equal to the tolerance value. Only applies
if tol is set to "strict".
A radius of 1 with a tolerance of 0.5 returns all 8 surrounding pixels and with a
tolerance of 0 only the 4 orthogonally neighboring pixels.

Value

getNeighborCoords Numeric matrix with two columns containing the neighbors’ coordinates (in
pixels).

Examples

The neighbors with radius 1 of point (4,4) in an 8x8 grid.
With tolerance 0.5:
test <- matrix(0, nrow = 8, ncol = 8)
test[getNeighborCoords(c(4,4), 1, c(8,8))] <- 1
test
With tolerance 0.4:
test <- matrix(0, nrow = 8, ncol = 8)
test[getNeighborCoords(c(4,4), 1, c(8,8), tol_val = 0.4)] <- 1
test

getOverviewInput Get an overview of the given root scans

Description

getOverviewInput - This function filters a set of root scan directories by checking if they comply
with the given naming convention and then returns overview data about these directories.

kimuraLength 25

Usage

getOverviewInput(data_dir, data_dirs = NULL, naming_conv = "standard")

Arguments

data_dir (Optional, default = NULL) String specifying the name (full path) of the direc-
tory containing all root scan directories of interest.

data_dirs (Optional, default = NULL) Character vector specifying all of the individual
root scan directories of interest. This is only used if data_dir is set to NULL.

naming_conv A string specifying the naming convention, i.e., what information is provided
within the names of the root scans. The file format can be png, tiff, jpg, or jpeg
(upper or lowercase). Available are:

• "standard" (default): This is a commonly used naming convention and has
the following structure:
project_tube_depth_date_ID_session_operator
Example:
Testproject_T007_L004_12.12.2025_123394_016_Testoperator.jpg
Explanation of the abbreviations:
– project: Project name (’unlimited’ letters or digits)
– tube: ID of the minirhizotron ("T"+3 digits)
– depth: ID of the depth-level/window ("L"+3 digits)
– date: Date of the scanning (format day.month.year, 2 digits +"."+ 2 digits
+"."+ 2 or 4 digits)
– ID: ID of the scan (6 digits) or timecode 14:23:10 -> 142310
– session: ID of the scan session (3 digits).
– operator: ID of the person that scanned the root (’unlimited’ letters or
digits)

Value

getOverviewInput A data frame containing the information about the various root scan directories
(see also getDepthLvlInfo() for further explanations).

Examples

getOverviewInput(data_dir = NULL, naming_conv = "standard")

kimuraLength Computation of the Kimura length

Description

kimuraLength - Computes the Kimura length according to the specified formula to estimate the
root length shown in a skeletonized black & white image of a root.
Optionally, a masking layer can be specified that indicates which pixels of the image should be
considered.

26 kimuraLength

Usage

kimuraLength(
skel_img,
formula = 6,
mask = NULL,
strict_mask = TRUE,
show_messages = TRUE

)

Arguments

skel_img Skeleton image (provided by the RootDetector). Can be a PNG, i.e., an array
with 3 dimensions (3 layers each containing a 2-dim. numeric matrix with values
between 0 and 1), or a 2-dim. matrix.

formula Integer value specifying the formula to be used (by default 6) based on Kimura
et al., 1999 (see references). Available are the following formulas, where No

denotes the number of orthogonal and Nd the number of diagonal connections
(between white pixels), and Nwhitepx the number of white pixels in the image.
Furthermore, there are three additional formulas to simply count white, or black,
or red pixels.

• Formula 1: 1.1107 · (Nd +No),

• Formula 2:
√
2 ·Nd +No,

• Formula 3: 0.948 · (
√
2 ·Nd +No),

• Formula 4:
√
N2

d + (Nd +No)2,

• Formula 6:
√
N2

d + (Nd +No/2)2 +No/2,

• Formula 7: 1.1107 ·Nwhitepx.
• Formula 97: Nwhitepx.
• Formula 98: Nblackpx.
• Formula 99: Nredpx.

mask 2-dim. true/false-matrix with the same number of rows and columns as skel_img
(optional, default = NULL, interpreted as a matrix consisting only of TRUEs,
i.e., nothing is "removed" from the image).

strict_mask Specifies how strictly the mask should be applied. Available are:

• TRUE (default): Connections between TRUE-pixels and neighboring FALSE-
pixels are not counted. As a result, the root length is likely to be underesti-
mated, especially if there are many TRUE-FALSE transitions in the mask.

kimuraLength 27

• FALSE: Connections between TRUE-pixels and neighboring FALSE-pixels
are counted. As a result, the root length is likely to be overestimated, espe-
cially if there are many TRUE-FALSE transitions in the mask.

show_messages Specify if messages about the counts of orthogonal and diagonal connection
counts should be depicted (default TRUE).

Value

kimuraLength Numeric value (root length estimation).

References

Kimura, K., Kikuchi, S. & Yamasaki, Si. Accurate root length measurement by image analysis.
Plant and Soil 216, 117–127 (1999). doi: 10.1023/A:1004778925316

Examples

This is a simple image with 2 diagonal and 1 orthogonal connections.
With Formula 6 (default):
kimuraLength(matrix(c(

1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 1

), ncol = 4, nrow = 3, byrow = TRUE))
With Formula 4:
kimuraLength(

matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 1

), ncol = 4, nrow = 3, byrow = TRUE),
formula = 4

)
With Formula 6 and a mask which makes the function ignore the right side
of the image. If stict_mask = TRUE, only 1 diagonal connection can be
found. If set to FALSE, i.e., relaxed mask borders, then 2 diagonal
connections are counted.
kimuraLength(

skel_img = matrix(c(
1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 1

), ncol = 4, nrow = 3, byrow = TRUE),
mask = matrix(

c(
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE,
TRUE, TRUE, FALSE, FALSE

),
ncol = 4, nrow = 3,
byrow = TRUE

), strict_mask = FALSE

28 showImgMask

)

ppcm2ppi Functions for converting resolutions: ppi and ppcm

Description

ppcm2ppi - Converts a resolution given in pixels per cm to pixels per inch.

ppi2ppcm - Converts a resolution given in pixels per inch to pixels per cm.

Usage

ppcm2ppi(ppcm)

ppi2ppcm(ppi)

Arguments

ppcm Numeric value or numeric vector of resolutions in ppcm to be converted to ppi.

ppi Numeric value or numeric vector of resolutions in ppi to be converted to ppcm.

Value

ppcm2ppi Numeric value or numeric vector of resolutions in ppi.

ppi2ppcm Numeric value or numeric vector of resolutions in ppcm.

Examples

ppcm2ppi(2)
ppi2ppcm(2)

showImgMask Depict images with masking layers

Description

showImgMask - Depicts an image, e.g., a root scan, with an optional masking layer using a specified
color.

applyImgMask - Changes the colouring of an image, e.g., a root scan, according to a masking layer
using a specified color. If only a matrix is provided, it is treated like the r-layer (referring to the rgb
color values).

showImgMask 29

Usage

showImgMask(root_img = NULL, mask = NULL, mask_col = "grey")

applyImgMask(root_img = NULL, mask = NULL, mask_col = "grey")

Arguments

root_img Root image. Can be a PNG, i.e., an array with 3 dimensions (3 layers each
containing a 2-dim. numeric matrix with values between 0 and 1), or a 2-dim.
matrix. If the root image is NULL (default), then a completely black image is
used.

mask 2-dim. true/false-matrix with the same number of rows and columns as skel_img
(optional, default = NULL, interpreted as a matrix consisting only of TRUEs,
i.e., nothing is "removed" from the image).

mask_col Color of the FALSE-regions of the mask (default "grey"). Can be of any of the
three kinds of R color specifications, i.e., either a color name (as listed by col-
ors()), a hexadecimal string (see Details), or a positive integer (indicates using
palette()).

Value

showImgMask No return value, called for side effects (plotting).

applyImgMask An array with 3 dimensions (3 layers each containing a 2-dim. numeric matrix with
values between 0 and 1) like a PNG.

Examples

Basic example:
showImgMask(matrix(c(1,0,0,0,

0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(TRUE, FALSE,FALSE,TRUE,
TRUE, TRUE, TRUE, TRUE,
FALSE,TRUE, TRUE, FALSE), ncol = 4, nrow = 3,
byrow = TRUE))

Example using the createDepthLayerMasks()-function:.
showImgMask(root_img = matrix(c(1,0,0,0,0,0,0,

0,1,0,0,0,0,0,
0,0,1,1,0,0,0), ncol = 7, nrow = 3, byrow = TRUE),

mask = createDepthLayerMasks(ppcm = 1,
dims_px = c(3,7),
depth_levels_cm = rbind(c(-1,-2), c(-2,-3)))[[1]],

mask_col ="brown")
Basic example:
applyImgMask(matrix(c(1,0,0,0,

0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(TRUE, FALSE,FALSE,TRUE,
TRUE, TRUE, TRUE, TRUE,
FALSE,TRUE, TRUE, FALSE), ncol = 4, nrow = 3,

30 skelPxWidth

byrow = TRUE))

skelPxWidth Count skeleton root pixels with certain widths in the base root image

Description

skelPxWidth - Counts the skeleton pixels that belong to root pieces of certain (circular) widths
(diameter <3px, 3-7px, >7px).
For each white root pixel in the skeleton image, it checks how large (in terms of the categories
<3px, 3-7px, >7px, which equal a radius of <1px, 1-3px, >=4px) the circle of white root pixels is
that surrounds it in the base root image.
Optionally, a masking layer can be specified that indicates which pixels of the skeleton image should
be checked (the radius of the white circle is still check in the complete base image).

Usage

skelPxWidth(base_img, skel_img, mask = NULL)

Arguments

base_img Base image (provided by the RootDetector). Can be a PNG, i.e., an array with
3 dimensions (3 layers each containing a 2-dim. numeric matrix with values
between 0 and 1), or a 2-dim. matrix.

skel_img Skeleton image with the same number of rows and columns as base_img (pro-
vided by the RootDetector). Can be a PNG, i.e., an array with 3 dimensions (3
layers each containing a 2-dim. numeric matrix with values between 0 and 1),
or a 2-dim. matrix.

mask 2-dim. true/false-matrix with the same number of rows and columns as base_img
(optional, default = NULL, interpreted as a matrix consisting only of TRUEs,
i.e., nothing is "removed" from the image).

Value

skelPxWidth Numeric vector of length 3 containing the counts.

Examples

In this example there are 2 white root pixels in the skeleton image.
The left one is completely surrounded by white pixels in the base image,
it falls into Category 2 (3-7px). The bottom right one has a black
neighboring pixel and thus falls in to Category 1 (<3px). Thus, the result
is Categorie 1: 1 pixel, Cat. 2: 1 pixel, Cat. 3: 0 pixels.
skelPxWidth(base_img = matrix(c(1,1,1,0,

1,1,1,0,
1,1,1,1), ncol = 4, nrow = 3, byrow = TRUE),

skel_img = matrix(c(0,0,0,0,
0,1,0,0,

stitchImgs 31

0,0,0,1), ncol = 4, nrow = 3, byrow = TRUE))
Similar example with a mask which makes the function "ignore" the right
side of the skeleton image.
The function still identifies the left white pixel as of Category 2.
skelPxWidth(matrix(c(1,1,1,0,

1,1,1,0,
1,1,1,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(0,0,0,0,
0,1,0,0,
0,0,0,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(TRUE,TRUE,FALSE,FALSE,
TRUE,TRUE,FALSE,FALSE,
TRUE,TRUE,FALSE,FALSE), ncol = 4, nrow = 3,
byrow = TRUE))

stitchImgs Stitch images

Description

stitchImgs - This function stitches all specified images (currently only PNGs supported) together
in a line. It also searches for the best overlap between two consecutive images (see parameters and
findOverlap()). If overlap_px is already known, this function calls blendImgs().

blendImgs - This function stitches all specified images together in a line according to specified
overlap widths.

Usage

stitchImgs(
img_paths = NULL,
imgs = NULL,
out_file = NULL,
overlap_px = NULL,
max_shift_px = NULL,
perc_better_per_px = 0.01,
corr_formula = "1-rel_eucl_diff_colors",
stitch_direction = "left_to_right",
blending_mode = "under",
show_messages = TRUE

)

blendImgs(
img_paths = NULL,
imgs = NULL,
out_file = NULL,
overlap_px,
stitch_direction = "left_to_right",
blending_mode = "under"

)

32 stitchImgs

Arguments

img_paths (Optional, default = NULL) Character vector specifying all of the individual im-
age paths of interest. This is only used if imgs is set to NULL. For ImageCorr()
it must have length 2.

imgs List of images (e.g., provided by the RootDetector). Each image can be a PNG,
i.e., an array with 3 dimensions (3 layers each containing a 2-dim. numeric
matrix with values between 0 and 1), or a 2-dim. matrix. For ImageCorr() it
must have length 2.

out_file Full path for how the stitched image should be saved, e.g. ’C:/path/stitched.png’.
If no path is provided, the image is not saved (only returned).

overlap_px Numeric vector (default NULL) specifying the (likely) widths of the overlaps
between two consecutive images. The vector must have one element less than
there are images and must not contain any negative values.

max_shift_px Numeric vector (default NULL) specifying the maximal deviation in pixels from
the overlap_px, i.e., all possible overlaps in that range from the likely overlap
are compared and the best is chosen if it is better than the overlap_px (see also
perc_better_per_px). If overlap_px is already exact, then set max_shift_px
to zero(s). If at NULL, it is set to 10 percent of the image.

perc_better_per_px

Numeric value (percentage, default 0.01, i.e., 1 percent) specifying how much
better the correlation of an overlap must be than the overlap_px per pixel dif-
ference, to be selected instead. If set to 0, the overall best correlation determines
the overlap. Example: If set to 0.01 = 1 percent, an overlap being 4 pixels away
from the specified overlap_px must have a correlation 4*1 percent better than
overlap_px to be chosen as the better overlap.

corr_formula Character value specifying the formula to be used (by default 1) for calculating
how good an overlap of two images is, i.e., how similar the two overlapping
images are. Available are the following formulas:

• "frac_matches_rgb_intensities": Fraction of matching intensities over all
three color channels. Only suitable for images with few unique colors.
Ranges from 0 (no matches) to 1 (full match).

• "frac_matches_colors": Fraction of matching colors in the images. Only
suitable for images with few unique colors. Ranges from 0 (no matches) to
1 (full match).

• "weighted_matches_b_w": Counts the matches of black and white pixels
and weighs them anti-proportional to the black and white pixel frequen-
cies. Both black and white make up half of the correlation score. Only
suitable for images with mostly pure black and white pixels. Ranges from
0 (no matches) to 1 (full match).

• "weighted_matches_colors": Counts the matches per unique color and weighs
them anti-proportional to the frequencies of the colors. Each unique color

stitchImgs 33

makes up the same fraction of the correlation score. Only suitable for im-
ages with few unique colors. Ranges from 0 (no matches) to 1 (full match).

• "1-rel_sqrd_diff_rgb_intensities": One minus the relative squared differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

• "1-rel_abs_diff_rgb_intensities": One minus the relative absolute differ-
ence of intensities across all color channels. Ranges from 0 (no matches) to
1 (full match).

• "1-rel_eucl_diff_colors" (default): One minus the relative Euclidean differ-
ences of colors. Ranges from 0 (no matches) to 1 (full match).

stitch_direction

Character specifying in which order the images should be stitched. Available
are: ’left_to_right’ (default), ’right_to_left’, ’top_to_bottom’, and ’bottom_to_top’.

blending_mode Character value specifying how overlapping pixels are combined. Available are:

• "under" (default): The first image(s) dominate(s), and only non-overlapping
parts of further images contribute.

• "over": The next image completely replaces the previous image in the over-
lap.

• "average": The RGB values of overlapping regions are averaged.

• "max": The maximal RGB values from both images are chosen.

• "min": The minimal RGB values from both images are chosen.

show_messages Specify if messages should be depicted (default TRUE).

Value

stitchImgs The stitched image in the form of a PNG, i.e., an array with 3 dimensions (3 layers
each containing a 2-dim. numeric matrix with values between 0 and 1).

blendImgs The stitched image in the form of a PNG, i.e., an array with 3 dimensions (3 layers each
containing a 2-dim. numeric matrix with values between 0 and 1).

Examples

Small example of stitching two 3x4 matrices left to right together.
test <- stitchImgs(imgs = list(matrix(c(1,0,0,0,

0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3,

byrow = TRUE),
matrix(c(0,0,0,0,

1,0,0,1,

34 stitchImgs

0,1,1,0), ncol = 4, nrow = 3,
byrow = TRUE)),

overlap_px = 1, max_shift_px = 2)
The stitched image also contains the overlaps used for stitching.
attributes(test)
Example of stitching the two matrices with a fixed (in this case not
optimal) overlap.
blendImgs(imgs = list(matrix(c(1,0,0,0,

0,1,0,0,
0,0,1,1), ncol = 4, nrow = 3, byrow = TRUE),

matrix(c(0,0,0,0,
1,0,0,1,
0,1,1,0), ncol = 4, nrow = 3, byrow = TRUE)),

overlap_px = 1, blending_mode = "over")[,,1]

Index

applyImgMask (showImgMask), 28

blendImgs (stitchImgs), 31

checkInput, 2
cm2px, 3
combineStatsWithDL, 4
createDepthLayerMasks, 4

dissectionLine (createDepthLayerMasks),
4

findAvgOverlap, 7
findAvgSurface, 9
findOverlap, 11
findSurface, 14

getDepthLayerInfo, 16
getDepthLayerInfo_par, 20
getNeighborCoords, 23
getOverviewInput, 24

imageCorr (findOverlap), 11

kimuraLength, 25

ppcm2ppi, 28
ppi2ppcm (ppcm2ppi), 28
px2cm (cm2px), 3

showImgMask, 28
skelPxWidth, 30
splitImgHoriz (findSurface), 14
stitchImgs, 31

35

	checkInput
	cm2px
	combineStatsWithDL
	createDepthLayerMasks
	findAvgOverlap
	findAvgSurface
	findOverlap
	findSurface
	getDepthLayerInfo
	getDepthLayerInfo_par
	getNeighborCoords
	getOverviewInput
	kimuraLength
	ppcm2ppi
	showImgMask
	skelPxWidth
	stitchImgs
	Index

