fairGNN: Fairness-Aware Gated Neural Networks
Tools for training and analysing fairness-aware gated neural 
    networks for subgroup-aware prediction and interpretation in clinical datasets. 
    Methods draw on prior work in mixture-of-experts neural networks by
    Jordan and Jacobs (1994) <doi:10.1007/978-1-4471-2097-1_113>,
    fairness-aware learning by Hardt, Price, and Srebro (2016) <doi:10.48550/arXiv.1610.02413>,
    and personalised treatment prediction for depression by Iniesta, Stahl, and McGuffin (2016) 
    <doi:10.1016/j.jpsychires.2016.03.016>.
| Version: | 0.1.0 | 
| Depends: | R (≥ 4.1.0) | 
| Imports: | dplyr, tibble, ggplot2, readr, pROC, magrittr, tidyr, purrr, utils, stats, ggalluvial, tidyselect | 
| Suggests: | knitr, torch, testthat, readxl, rmarkdown | 
| Published: | 2025-10-26 | 
| DOI: | 10.32614/CRAN.package.fairGNN | 
| Author: | Rhys Holland [aut, cre] | 
| Maintainer: | Rhys Holland  <rhys.holland at icloud.com> | 
| BugReports: | https://github.com/rhysholland/fairGNN/issues | 
| License: | MIT + file LICENSE | 
| URL: | https://github.com/rhysholland/fairGNN | 
| NeedsCompilation: | no | 
| SystemRequirements: | Optional 'LibTorch' backend; install via
torch::install_torch(). | 
| CRAN checks: | fairGNN results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=fairGNN
to link to this page.