| Type: | Package | 
| Title: | Measurement Level Independent Feature Correlation Matrix | 
| Version: | 0.4.0 | 
| Maintainer: | Guido Moeser <guido.moeser@masem.de> | 
| Description: | Uses three different correlation coefficients to calculate measurement-level adequate correlations in a feature matrix: Pearson product-moment correlation coefficient, Intraclass correlation and Cramer's V. | 
| License: | GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| Imports: | stats | 
| RoxygenNote: | 7.1.0 | 
| NeedsCompilation: | no | 
| Packaged: | 2020-05-18 13:57:00 UTC; Dr. Guido Möser | 
| Author: | Guido Moeser [aut, cre], Ilja Muhl [aut] | 
| Repository: | CRAN | 
| Date/Publication: | 2020-05-27 10:30:02 UTC | 
Statlog (German Credit Data) Data Set
Description
This dataset classifies people described by a set of attributes as good or bad credit risks.
The variables are as follows:
- Credit. Target variable 
- balance_credit_acc. Status of existing checking account 
- duration. Duration in month 
- moral. Credit history 
- verw. Purpose 
- hoehe. Credit amount 
- sparkont. Savings account/bonds 
- beszeit. Present employment since 
- rate. Installment rate in percentage of disposable income 
- famges. Personal status and sex 
- buerge. Other debtors / guarantors 
- wohnzeit. Present residence since 
- verm. Property 
- alter. Age in years 
- weitkred. Other installment plans 
- wohn. Housing 
- bishkred. Number of existing credits at this bank 
- beruf. Job 
- pers. Number of people being liable to provide maintenance for 
- telef. Telephone 
- gastarb. Foreign worker 
Usage
data(GermanCredit)
Format
A data frame with 1000 rows and 21 variables
Source
UCI Repository, https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
Calculates Cramer's V Correlation Coefficient
Description
cv.test returns the Cramer's V correlation coefficient
Usage
cv.test(x, y)
Arguments
| x | a vector (categorical or numerical values) | 
| y | a vector (categorical or numerical values) | 
Details
The function calculates Cramer's V based on the results of an Chi-Square-Test of Independence between two categorical variables
Value
Cramer's V
Examples
cv.test(x = iris$Species, iris$Sepal.Length)
Calculates the Feature Correlation Matrix
Description
featureCorMatrix returns a correlation matrix between all features
Usage
featureCorMatrix(dataframe, absoluteValues = FALSE)
Arguments
| dataframe | A data.frame | 
| absoluteValues | A flag stating if only positive correlations should be returned | 
Details
The function selects automatically the appropriate correlation coefficient regarding the storage type of both variables - If both variable are numerical ones, the Pearson product-moment correlation coefficient will be chosen - If both variables are categorical, Cramer's V will be used - If one variable is a numerical and the other a categorical one, the Intraclass correlation will be calculated
Value
A correlation matrix
Examples
featureCorMatrix(dataframe = iris, absoluteValues = TRUE)
Calculates the Intraclass correlation
Description
The function calculates the Intraclass correlation based on the results of the 'aov' function
Usage
icc(depvar, indvar)
Arguments
| depvar | dependent variable, must be numeric | 
| indvar | independent variable, must be categorical | 
Value
returns the Intraclass correlation
Examples
icc(depvar = iris$Sepal.Length, indvar = iris$Species)