| Type: | Package | 
| Title: | Automatic Data Processing and Visualization for FRAP | 
| Version: | 0.1.3 | 
| Author: | Guanqiao Ding <gding16@gmail.com> | 
| Maintainer: | Guanqiao Ding <gding16@gmail.com> | 
| Description: | Automatically process Fluorescence Recovery After Photobleaching (FRAP) data and generate consistent, publishable figures. Note: this package does not replace 'ImageJ' (or its equivalence) in raw image quantification. Some references about the methods: Sprague, Brian L. (2004) <doi:10.1529/biophysj.103.026765>; Day, Charles A. (2012) <doi:10.1002/0471142956.cy0219s62>. | 
| Depends: | R (≥ 2.10) | 
| Imports: | grDevices, graphics, stats, utils | 
| BugReports: | https://github.com/GuanqiaoDing/frapplot/issues | 
| URL: | https://github.com/GuanqiaoDing/frapplot | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| LazyData: | true | 
| RoxygenNote: | 6.1.1 | 
| NeedsCompilation: | no | 
| Packaged: | 2019-01-03 06:32:56 UTC; dinggq | 
| Repository: | CRAN | 
| Date/Publication: | 2019-01-08 16:30:10 UTC | 
Example dataset
Description
Example dataset
Usage
example_dataset
Format
A list of three matrices: each contains FRAP data for a control or experimental group. For each matrix, nrow = time_points + 1, ncol = sample size.
Exclude samples from the dataset
Description
If certain samples are of poor quality, use this function to exclude them from the dataset.
Usage
exclude(ds, group, cols)
Arguments
| ds | Name of the dataset. | 
| group | Name of the group from which to exclude certain samples. | 
| cols | A vector of numbers specifying the column(s) to exclude. | 
Value
Modified dataset in the same format.
Examples
ds <- exclude(example_dataset, group = "mut1", cols = c(1,3))
Plot FRAP data of two selected groups
Description
Plot FRAP data of any two groups (e.g. control and mutant) in a consistent and publishable format.
Usage
frapplot(path, control, mutant, info)
Arguments
| path | Path of the output directory | 
| control | Name of the control. | 
| mutant | Name of the mutant. | 
| info | Returned information from  | 
Examples
info <- frapprocess(example_dataset, seq(0, 145, 5))
frapplot(tempdir(), "control", "mut2", info)
Process FRAP data
Description
Normalize and analyze FRAP data. Perform non-linear regression and calculate ymax, ymin, k, halftime, tau, total_recovery, total_recovery_sd.
Usage
frapprocess(ds, time_points)
Arguments
| ds | A dataset that contains FRAP data for multiple experiment groups | 
| time_points | A vector of time points (in second) that the experiment uses, e.g. 0, 5, 10, .... | 
Value
A list of results:
- $time_points: a vector of time points 
- $summary: summary of the regression 
- $sample_means: a matrix of sample means, nrow = num of time points, ncol = sample size 
- $sample_sd: a matrix of standard deviations, nrow = num of time points, ncol = sample size 
- $model: a list of models for each group from the non-linear regression 
- $details: details of the regression for each group 
Examples
info <- frapprocess(example_dataset, seq(0, 145, 5))