| Title: | Simultaneous Prediction and Confidence Bands for Time Series Data | 
| Version: | 0.2.0 | 
| Description: | Provides methods to compute simultaneous prediction and confidence bands for dense time series data. The implementation builds on the functional bootstrap approach proposed by Lenhoff et al. (1999) <doi:10.1016/S0966-6362(98)00043-5> and extended by Koska et al. (2023) <doi:10.1016/j.jbiomech.2023.111506> to support both independent and clustered (hierarchical) data. Includes a simple API (see band()) and an 'Rcpp' backend for performance. | 
| License: | GPL-3 | 
| URL: | https://github.com/koda86/funbootband-cran | 
| BugReports: | https://github.com/koda86/funbootband-cran/issues | 
| Depends: | R (≥ 3.5) | 
| Imports: | Rcpp, stats | 
| LinkingTo: | Rcpp | 
| Suggests: | testthat (≥ 3.0.0), knitr, rmarkdown | 
| VignetteBuilder: | knitr | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.3 | 
| SystemRequirements: | C++17 | 
| Config/testthat/edition: | 3 | 
| ByteCompile: | true | 
| NeedsCompilation: | yes | 
| Packaged: | 2025-10-14 13:25:59 UTC; daniel | 
| Author: | Daniel Koska | 
| Maintainer: | Daniel Koska <dkoska@proton.me> | 
| Repository: | CRAN | 
| Date/Publication: | 2025-10-20 09:20:02 UTC | 
Simultaneous Bands for Functional Data
Description
Create simultaneous bootstrap bands for dense functional data
(rows are time points, columns are curves). Supports clustered designs
via a simple cluster bootstrap when iid = FALSE.
Usage
band(
  data,
  type = c("prediction", "confidence"),
  alpha = 0.05,
  iid = TRUE,
  id = NULL,
  B = 1000L,
  k.coef = 50L
)
Arguments
| data | Numeric matrix with T rows (time) and n columns (curves). A data.frame of numeric columns is also accepted and coerced to a matrix. | 
| type | Character, either "prediction" or "confidence". | 
| alpha | Numeric in (0, 1). Use 0.05 for 95% bands. | 
| iid | Logical; if FALSE, use a cluster bootstrap (requires  | 
| id | Optional integer/factor vector of length ncol(data) giving a cluster id
for each curve (used when  | 
| B | Integer, number of bootstrap iterations (e.g., 1000 for final results; use smaller values in examples/tests). | 
| k.coef | Integer; number of Fourier harmonics (default 50).
Automatically clamped to  | 
Value
A list with elements lower, mean, upper (each of length T) and meta
(a list with settings such as type, alpha, iid, B, n, T).
References
Koska, D., Oriwol, D., & Maiwald, C. (2023). Comparison of statistical models for characterizing continuous differences between two biomechanical measurement systems. Journal of Biomechanics, 149, 111506. doi:10.1016/j.jbiomech.2023.111506
Lenhoff, M. W., Santner, T. J., Otis, J. C., Peterson, M. G. E., Williams, B. J., & Backus, S. I. (1999). Bootstrap prediction and confidence bands: a superior statistical method for analysis of gait data. Gait & Posture, 9(1), 10–17. doi:10.1016/S0966-6362(98)00043-5
Davison, A. C., & Hinkley, D. V. (1997). Bootstrap Methods and Their Application. Cambridge University Press. doi:10.1017/cbo9780511802843
Examples
## i.i.d. example
set.seed(1)
T <- 200
n <- 10
x <- seq(0, 1, length.out = T)
# Simulate smooth Gaussian-process-like curves of equal length
mu  <- 10 * sin(2 * pi * x)
ell <- 0.12; sig <- 3
Kmat <- outer(x, x, function(s, t) sig^2 * exp(-(s - t)^2 / (2 * ell^2)))
ev <- eigen(Kmat + 1e-8 * diag(T), symmetric = TRUE)
Z  <- matrix(rnorm(T * n), T, n)
Y  <- mu + ev$vectors %*% (sqrt(pmax(ev$values, 0)) * Z)
Y  <- Y + matrix(rnorm(T * n, sd = 0.2), T, n) # observation noise
# Fit prediction and confidence bands
fit_pred <- band(Y, type = "prediction", alpha = 0.11, iid = TRUE, B = 1000L, k.coef = 50L)
fit_conf <- band(Y, type = "confidence", alpha = 0.11, iid = TRUE, B = 1000L, k.coef = 50L)
# Plot the results
x_idx <- seq_len(fit_pred$meta$T)
ylim  <- range(c(Y, fit_pred$lower, fit_pred$upper), finite = TRUE)
plot(x_idx, fit_pred$mean, type = "n", ylim = ylim,
     xlab = "Index (Time)", ylab = "Amplitude",
     main = "Simultaneous bands (i.i.d.)")
matlines(x_idx, Y, col = "gray70", lty = 1, lwd = 1)
polygon(c(x_idx, rev(x_idx)), c(fit_pred$lower, rev(fit_pred$upper)),
        col = grDevices::adjustcolor("steelblue", alpha.f = 0.25), border = NA)
polygon(c(x_idx, rev(x_idx)), c(fit_conf$lower, rev(fit_conf$upper)),
        col = grDevices::adjustcolor("gray40", alpha.f = 0.3), border = NA)
lines(x_idx, fit_pred$mean, col = "black", lwd = 1)
## clustered (hierarchical) example
set.seed(2)
T <- 200
m <- c(5, 5)
x <- seq(0, 1, length.out = T)
# Cluster-specific means
mu <- list(
  function(z) 8 * sin(2 * pi * z),
  function(z) 8 * cos(2 * pi * z)
)
# Generate curves with smooth within-cluster variation
Bm <- cbind(sin(2 * pi * x), cos(2 * pi * x))
gen_curve <- function(k) {
  sc <- rnorm(ncol(Bm), sd = c(2.0, 1.5))
  mu[[k]](x) + as.vector(Bm %*% sc)
}
Ylist <- lapply(seq_along(m), function(k) {
  sapply(seq_len(m[k]), function(i) gen_curve(k) + rnorm(T, sd = 0.6))
})
Y <- do.call(cbind, Ylist)
colnames(Y) <- unlist(mapply(
  function(k, mk) paste0("C", k, "_", seq_len(mk)),
  seq_along(m), m
))
# Fit prediction and confidence bands
fit_pred <- band(Y, type = "prediction", alpha = 0.11, iid = FALSE, B = 1000L, k.coef = 50L)
fit_conf <- band(Y, type = "confidence", alpha = 0.11, iid = FALSE, B = 1000L, k.coef = 50L)
# Plot the results
x_idx <- seq_len(fit_pred$meta$T)
ylim   <- range(c(Y, fit_pred$lower, fit_pred$upper), finite = TRUE)
plot(x_idx, fit_pred$mean, type = "n", ylim = ylim,
     xlab = "Index (Time)", ylab = "Amplitude",
     main = "Simultaneous bands (clustered)")
matlines(x_idx, Y, col = "gray70", lty = 1, lwd = 1)
polygon(c(x_idx, rev(x_idx)), c(fit_pred$lower, rev(fit_pred$upper)),
        col = grDevices::adjustcolor("steelblue", alpha.f = 0.25), border = NA)
polygon(c(x_idx, rev(x_idx)), c(fit_conf$lower, rev(fit_conf$upper)),
        col = grDevices::adjustcolor("gray40", alpha.f = 0.3), border = NA)
lines(x_idx, fit_pred$mean, col = "black", lwd = 1)