Exact and approximation algorithms for variable-subset selection in ordinary linear regression models. Either compute all submodels with the lowest residual sum of squares, or determine the single-best submodel according to a pre-determined statistical criterion. Hofmann et al. (2020) <doi:10.18637/jss.v093.i03>.
| Version: | 0.5-2 | 
| Depends: | R (≥ 3.5.0) | 
| Imports: | stats, graphics, utils | 
| Published: | 2021-02-07 | 
| DOI: | 10.32614/CRAN.package.lmSubsets | 
| Author: | Marc Hofmann [aut, cre],
  Cristian Gatu [aut],
  Erricos J. Kontoghiorghes [aut],
  Ana Colubi [aut],
  Achim Zeileis | 
| Maintainer: | Marc Hofmann <marc.hofmann at gmail.com> | 
| License: | GPL (≥ 3) | 
| URL: | https://github.com/marc-hofmann/lmSubsets.R | 
| NeedsCompilation: | yes | 
| SystemRequirements: | C++11 | 
| Citation: | lmSubsets citation info | 
| CRAN checks: | lmSubsets results | 
| Reference manual: | lmSubsets.html , lmSubsets.pdf | 
| Vignettes: | lmSubsets: Exact Variable-Subset Selection in Linear Regression for R (source, R code) | 
| Package source: | lmSubsets_0.5-2.tar.gz | 
| Windows binaries: | r-devel: lmSubsets_0.5-2.zip, r-release: lmSubsets_0.5-2.zip, r-oldrel: lmSubsets_0.5-2.zip | 
| macOS binaries: | r-release (arm64): lmSubsets_0.5-2.tgz, r-oldrel (arm64): lmSubsets_0.5-2.tgz, r-release (x86_64): lmSubsets_0.5-2.tgz, r-oldrel (x86_64): lmSubsets_0.5-2.tgz | 
| Old sources: | lmSubsets archive | 
Please use the canonical form https://CRAN.R-project.org/package=lmSubsets to link to this page.