Package ‘macro’

November 26, 2025

Type Package
Title A Macro Language for 'R' Programs
Version 0.1.5

Description A macro language for 'R' programs, which
provides a macro facility similar to 'SAS®'. This
package contains basic macro capabilities
like defining macro variables, executing conditional
logic, and defining macro functions.

License CCO
Encoding UTF-8

URL https://macro.r-sassy.org, https://github.com/dbosak@d1/macro

BugReports https://github.com/dbosakd1/macro/issues
Depends R (>=4.0), common

Suggests sassy, knitr, rmarkdown, testthat (>= 3.0.0), rstudioapi
Imports fmtr, utils, crayon

Config/testthat/edition 3

RoxygenNote 7.3.3

VignetteBuilder knitr

NeedsCompilation no

Author David Bosak [aut, cre],
Bill Huang [ctb],
Duong Tran [ctb]

Maintainer David Bosak <dbosak@1@gmail.com>
Repository CRAN
Date/Publication 2025-11-26 20:30:02 UTC

https://macro.r-sassy.org
https://github.com/dbosak01/macro
https://github.com/dbosak01/macro/issues

2 msource

Contents
MSOUICE . .« v v v e v e 2
print.symtable L 7
TUNMSOUICE o e e e e e e e 9
runMSourceDebug L 10
symelearo 10
SYMEEL . . v o v e e e e e e e e e e e e e 12
SYMPUL . . . v ottt e e e e e e e e e e e e e 13
symtableo e e e 14

Index 17

msource Macro Source Function
Description

The msource function is used to pre-process and source macro-enabled programs. The function
first runs the macro pre-processor to evaluate any macro commands. During macro evaluation, an
output file is created that contains generated code. After pre-processing, this generated code is

sourced normally.

Usage

msource(
pth = NULL,
file_out = NULL,
envir = parent.frame(),
exec = TRUE,
debug = FALSE,
debug_out = NULL,
symbolgen = FALSE,

echo = TRUE,
clear = TRUE,
)
Arguments
pth The path to the R program to process. This parameter is required. It will default
to the currently activated program in the development environment.
file_out If you want to save or view the generated code from the msource function,

supply a full path and file name on this parameter. Default is NULL. When
NULL, the function will create a temp file for the generated code. The temp file

will be deleted when processing is complete.

msource 3

envir The environment to be used for program execution, or the keyword "local". De-
fault is the parent frame. If the parent frame is used, all variables and data
initialized in the executed program will be available in the parent frame. If you
do not want variables created in the parent frame, pass the quoted string "local"
to have the function execute in a local environment.

exec Whether or not to execute the output file after pre-processing. Default is TRUE.
When FALSE, only the pre-processing step is performed. If a file_out param-
eter is supplied, the generated code file will still be created.

debug If TRUE, prints lines to the console as they are processed. This information case
be useful for debugging macro code. Default is FALSE.

debug_out A path to a file to be used for debugging. If a path is supplied, debug output will
be written to the file instead of the console. Default is NULL.

symbolgen If debugger is on, this option will display the name and value of any macro
variables encountered during resolution. Default is FALSE.

echo Whether or not to echo the generated code to the console. Default is TRUE.

clear Whether or not to clear the macro symbol table before pre-processing begins.
Default is TRUE.

Follow-on parameters to the source function. See the source function for ad-
ditional information.

Details

R does not have a native macro language. The macro package attempts to make up for that defi-
ciency. The package devised a set of macro commands inspired by SAS syntax, which can be added
to any R script. The macro commands are placed in R comments, prefixed by the characters "#%".

The macro commands function as pre-processor directives, and the msource function is the pre-
processor. These commands operate as text replacement and branching functions. They allow you
to perform high-level manipulation of your program before the code is executed.

Value

The results of the source () function, invisibly. The path of the resolved output file is also included
under the "$output” list item.

How to Use

The msource function works very much like the Base R source function. You pass the path to the
code file as the first parameter, and msource will run it. The difference is that msource will first
pre-process the file and resolve any macro commands. The resolved code is placed by default into
a temp file and then executed. If you wish to save the generated code, supply a local path on the
file_out parameter.

The msource function can be run on the command line or from an R script. When run from the
command line, the function will take the currently active program in RStudio as the default input.
That means if you are working in RStudio, you can easily execute your macro code just by running
msource () on the command line with no parameters.

4 msource

In addition, the macro package registers addin menus in RStudio when installed. These addin
menus can be tied to keyboard shortcuts, which can make running msource even easier. See
vignette("macro-setup”) to learn how to configure the keyboard shortcuts.

Macro Commands

Here is a summary of the available macro commands:

* #%<comment>: A macro comment.

* #%let <variable> <- <value>: Declares a macro variable and assigns it a value.

* #%include <path>’: Inserts code from included file as text into current program.

* #%if (<condition>): Begins a macro conditional block.

* #%elseif (<condition>): Defines a subsequent conditional block.

* #%else: Identifies the default behavior in a condition.

* #%end: Ends a macro condition.

* #%do <variable> = <start> %to <end>: Defines a macro do loop block.

* %sysfunc(<expression>): Evaluates an R expression as part of a macro command.

* %symexist(<name>): Determines if a macro variable name exists in the macro symbol table.

* %symput(<expression>): Assigns the result of an expression in the execution environment
to a macro variable.

* %nrstr(<expression>): A macro quoting function that masks the enclosed expression to pre-
vent resolution.

* #%macro <name>(<parml>, <parm2>, ...): Declares the start of a macro function, identi-
fies the function name, and defines any parameters.

* #%mend: Ends a macro function definition.

You can find extensive documentation for the above macro commands in the the Macro Language
vignette. To access the vignette, run vignette(”"macro-language”) on the R command line.

Pre-Processor

There are three main steps to processing a macro-enabled program: pre-process the input file, gen-
erate an output file, and then execute the output file.

The pre-processor works by inputting each line of the program line by line. For each line in the input
script, the function will assign and replace any macro variables. The pre-processor also evaluates
any macro conditions. For any macro conditions that are TRUE, the pre-processor will output that
line to the generated code file. If a condition evaluates as FALSE, the lines inside that block will be
ignored.

In short, the pre-processor scans the input program from top to bottom, spitting out lines or not de-
pending on the macro conditions. This logic makes the macro package perfect for code generation.

msource 5

Code Generation

Code generation in R is most often performed using string concatenation, and writing out strings to
a file. The macro package gives you a much easier way to do it. Using pre-processor directives,
you can write your code as normal code. These code lines will be subject to the syntax checker, and
any errors in syntax will be highlighted immediately.

The macro package also makes it easy to construct code from code snippets. You can store your
snippets in separate files, and then pull them together using #%include and macro logic.

The collation process is further enhanced by the macro debugger. The debugger allows you to solve
issues in the macro code much faster and easier than doing string concatenation.

Debugger

The msource function has a built-in debugger. The debugger can be very useful when identifying
problems in your macro-enabled program. The debugger can be activated by setting debug = TRUE
on your call to msource. When activated, the debugger will by default send debug information to
the R console. The debug information can show you which lines made it into the output file, and
how those lines resolved. It will also echo the source call for the generated code. If an error occurs
at either of these stages, the debug information will help you pinpoint which line produced the error.

For a full explanation of the debugger capabilities and several examples, see the debugging vignette
at vignette('macro-debug').

Output File Execution

Once the output file has been generated successfully, the msource function will execute it normally
using the Base R source function. At this point the generated code runs like a normal R program,
and any errors or warnings will be sent to the console.

If you do not wish to execute the generated code, use the exec parameter to turn off execution.

Examples

library(macro)

HHHHHHARHEEE A AR R
Example 1: Hello World Macro
B B R g g S S i s i iy S e g iaiaiaid

Get path to demo macro program
src <- system.file("extdata/Demol.R", package = "macro”)

Display source code

- This is the macro input code
cd <-readlLines(src)
cat(paste(cd, "\n"))

#%let a <- 1

#%if (&a. == 1)
print("Hello World!")
#%else

print("Goodbye!")
#%end

#
#

Macro Execute Source Code
- Results displayed below

msource(src)

#

B g i g S
Example 2: Perform correlation analysis between variables in MTCARS
AR AR A

#

#

[1] "Hello World!"

Get path to demo macro program

src <- system.file("extdata/Demo2.R", package = "macro”)

#

Display source code

cd <- readlLines(src)
cat(paste(cd, "\n"))

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
1t
#
#
1t
#
#
#

#

#% Macro for Correlation Analysis
#%»macro get_correlation(dat, xvar, yvars)

Perform Analysis ---------—---———-———-
#%do idx = 1 %to %sysfunc(length(&yvars))

#%let yvar <- %sysfunc(&yvars[&idx])
#%let xdat <- &dat$&xvar
#%let ydat <- &dat$&yvar
Correlation between &xvar and &yvar
anl_&yvar <- data.frame(XVAR = "&xvar",
YVAR = "&yvar”,
COR = cor("&xdat™, ~&ydat~,

method = "pearson”))
#%end
Bind Results ------------——---——--———-- -
#%let anl_lst <- %sysfunc(paste@("anl_", &yvars, collapse = ", "))

Combine all analysis data frames
final <- rbind(&anl_1lst™)

Print Results
print(final)

#%mend

#% Call Macro
#%get_correlation(mtcars, mpg, c("cyl”, "disp”, "drat"))

Macro Execute Source Code

msource

print.symtable 7

msource(src)

Correlation between mpg and cyl
anl_cyl <- data.frame(XVAR = "mpg",
YVAR = "cyl”,
COR = cor(mtcars$mpg, mtcars$cyl,
method = "pearson”))

Correlation between mpg and disp
anl_disp <- data.frame(XVAR = "mpg",

YVAR = "disp”,

COR = cor(mtcars$mpg, mtcars$disp,
method = "pearson”))

anl_drat <- data.frame(XVAR = "mpg",

YVAR = "drat",

COR = cor(mtcars$mpg, mtcars$drat,
method = "pearson”))

Bind Results --------—=--——--m—mmm oo

Combine all analysis data frames
final <- rbind(anl_cyl, anl_disp, anl_drat)

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
Correlation between mpg and drat
#
#
#
#
#
#
#
#
#
#
#
#
Print Results
print(final)
#

XVAR YVAR COR
1 mpg cyl -0.8521620
2 mpg disp -0.8475514
#
#

H+

3 mpg drat 0.6811719

print.symtable Print the Macro Symbol Table

Description

A class-specific instance of the print function for a macro symbol table and function list. Use
verbose = TRUE to print the catalog as a list.

8 print.symtable

Usage
S3 method for class 'symtable'
print(x, ..., verbose = FALSE)
Arguments
X The format catalog to print.

Any follow-on parameters.

verbose Whether or not to print the format catalog in verbose style. By default, the
parameter is FALSE, meaning to print in tabular style.

Value

The object, invisibly.

See Also

msource()

Other symtable: symclear(), symget(), symput(), symtable()
Examples
library(macro)

Get path to demo macro program
src <- system.file("extdata/Demo4.R", package = "macro")

Execute source code
msource(src, echo = FALSE)

Examine symbol table
res <- symtable()

View results

print(res)

Macro Symbol Table: 3 macro variables
Name Value

1 &x 1

#2 8y 2

3 & 1 + 2

Macro Function List: 1 macro functions
Name Parameter Default

1 test vl Hello!

View results structure
print(res, verbose = TRUE)
$variables

$variables$ &x”

[11 "M”

#

runMSource 9

$variables$ &y"

#[1]1 "2

#

$variables$ &z"

011 "1+ 2"

#

#

$functions

$functions$test

$functions$test$parameters

$functions$test$parameterssvl

[1] "Hello!”

#

#

$functions$test$code

[1] "print(\"&vI\")"

attr(,"start")

[11 8

attr(,"end"”)

[1] 8

runMSource Addin Function to Run msource()

Description

This function is exposed to the addin menu to run msource() interactively. The function will run
either the currently selected code, or the currently active program. The function sets the "envir"
parameter to the global environment and the "clear" parameter to FALSE to enhance the user expe-
rience. The function takes no parameters and is only used by the addin menu.

Usage

runMSource()

Value

The results of msource, invisibly.

Examples

Called from addin menu
runMSource()

10 symclear

runMSourceDebug Addin Function to Run msource() in Debug Mode

Description

This function is exposed to the addin menu to run msource() interactively in debug mode. The
function will run either the currently selected code, or the currently active program. On the call
to msource, it sets the "debug" and "symbolgen" parameters to TRUE. The function also sets the
"envir" parameter to the global environment and the "clear" parameter to FALSE to enhance the
user experience. The function takes no parameters and is only used by the addin menu.

Usage

runMSourceDebug ()

Value

The results of msource, invisibly.

Examples

Called from addin menu
runMSourceDebug ()

symclear Clear the Macro Symbol Table

Description

The symclear function clears the macro symbol table of any stored macro variables and macro
functions. The function is used to avoid contamination between one call to msource and the next.
It is called automatically when the "clear" parameter of msource is set to TRUE. If the "clear"
parameter is set to FALSE, you can clear the symbol table manually with the symclear function.

Usage

symclear(variables = TRUE, functions = TRUE)

Arguments

variables Whether or not to clear the macro symbol table. Default is TRUE.

functions Whether or not to clear the macro function list. Default is TRUE.

symclear 11

Value

The number of objects cleared, invisibly. The function also outputs a message saying how many
objects were cleared.

See Also

msource()

Other symtable: print.symtable(), symget(), symput(), symtable()

Examples

library(macro)

Get path to demo macro program
src <- system.file("extdata/Demo4.R", package = "macro")

Display source code

- This is the macro input code
cd <- readlLines(src)
cat(paste(cd, "\n"))

#% Create some macro variables
#%let x <- 1

#%let y <- 2

#%let z <- & + &y

#

#% Create a macro function

#%macro test(vl = Hello!)

print("&v1l")

#%mend

Execute source code
msource(src, echo = FALSE)

View symbol table

symtable()

Macro Symbol Table: 3 macro variables
Name Value

#1 &x 1

#2 8y 2

3 & 1 + 2

Macro Function List: 1 macro functions
Name Parameter Default

1 test vl Hello!

Clear symbol table

symclear()

Clearing macro symbol table...
4 items cleared.

View symbol table again
symtable()

12 symget

Macro Symbol Table: (empty)
Macro Function List: (empty)

symget Get a Variable Value from the Macro Symbol Table

Description

The symget function extracts the value of a single macro variable from the macro symbol table.

Usage
symget (name)
Arguments
name The name of the macro variable as a quoted string, with no leading ampersand
or trailing dot ("."). The leading ampersand will be added automatically by the
function. This parameter is required.
Value

The value of the macro variable as a character string. If the variable name is not found, the function
will return an NA.

See Also

msource()

Other symtable: print.symtable(), symclear(), symput(), symtable()

Examples

library(macro)

Get path to demo macro program
src <- system.file("extdata/Demo3.R", package = "macro”)

Display source code

- This is the macro input code

cd <- readLines(src)

cat(paste(cd, "\n"))

#% Determine appropriate data path

#%if ("&env."” == "prod")
#%let pth <- /projects/prod/data
#%else

#%let pth <- /projects/dev/data
#%end

symput 13

Set environment variable using symput()
symput("env"”, "prod")

Macro Execute Source Code
- set clear to FALSE to so "env" value is not removed
msource(src, echo = FALSE, clear = FALSE)

View "pth"” macro variable
res <- symget(”"pth")

View results

- Path is set to the "prod” value
res

[1] "/projects/prod/data”

symput Assign a Variable in the Macro Symbol Table

Description

The symput function assigns the value of a macro variable from regular R code.

Usage

symput(x, value = NULL)

Arguments
X The name of the macro variable to assign, passed as a quoted string with no
leading ampersand or trailing dot ("."). The leading ampersand will be added
automatically by the function. This parameter is required.
value The value of the macro variable to assign. Value will be converted to a character
string. This parameter is not required. If the value parameter is not supplied, the
variable will be removed from the symbol table.
Value

The macro name, invisibly.

See Also

msource()

Other symtable: print.symtable(), symclear(), symget(), symtable()

14 symtable

Examples

library(macro)

Get path to demo macro program
src <- system.file("extdata/Demo3.R", package = "macro”

Display source code

- This is the macro input code
cd <- readlLines(src)
cat(paste(cd, "\n"))

#% Determine appropriate data path
#%if ("&env." == "prod")

#%let pth <- /projects/prod/data
#%else

#%let pth <- /projects/dev/data
#%end

Set env macro variable using symput()
symput("env”, "prod")

Macro Execute Source Code
- set clear to FALSE to so "env" value is not removed
msource(src, echo = FALSE, clear = FALSE)

View "pth"” macro variable
res <- symget(”"pth")

View results

- Path is set to the "prod” value
res

[1] "/projects/prod/data”

symtable Examine the Macro Symbol Table

Description

The symtable function extracts the contents of the macro symbol table and macro function list.
The symbol table information is returned as an object. The object can be printed or navigated
programatically.

Usage
symtable()

Value

An object of class "symtable". The object contains a list of macro symbols and their values. It also
contains a list of macro functions, their parameters, and the associated code.

symtable

See Also

msource()

Other symtable: print.symtable(), symclear(), symget(), symput()

Examples

library(macro)

Get path to demo macro program
src <- system.file("extdata/Demo4.R", package = "macro")

Display source code

- This is the macro input code
cd <- readlLines(src)
cat(paste(cd, "\n"))

#% Create some macro variables
#%let x <- 1

#%let y <- 2

#%let z <- & + &y

#

#% Create a macro function

#%macro test(vl = Hello!)

print("&v1l")

#%mend

Execute source code
msource(src, echo = FALSE)

Examine symbol table
res <- symtable()

View results

print(res)

Macro Symbol Table: 3 macro variables
Name Value

#1 &x 1

#2 8y 2

3 & 1 + 2

Macro Function List: 1 macro functions
Name Parameter Default

1 test vl Hello!

View results structure
print(res, verbose = TRUE)
$variables
$variables$™&x~
1y "

#

#

#

$variables$ &y"
[1] "2"

#

#

$variables$ &z

15

16

T E E E E E E E E E

symtable

[1] " o4 Q"

$functions

$functions$test
$functions$test$parameters
$functions$test$parameterssvl
[1] "Hello!"

$functions$test$code
[1] "print(\"&vI\")"
attr(,"start")

[1] 8

attr(,"end"”)

[1] 8

Index

* fecat
print.symtable, 7

* symtable
print.symtable, 7
symclear, 10
symget, 12
symput, 13
symtable, 14

msource, 2
msource(), 8, 11-13, 15

print.symtable, 7, 11-13, 15

runMSource, 9
runMSourceDebug, 10

source, 3
symclear, 8, 10, 12, 13, 15
symget, 8, 11,12, 13,15
symput, 8, 11, 12,13, 15
symtable, 8, 11-13, 14

17

	msource
	print.symtable
	runMSource
	runMSourceDebug
	symclear
	symget
	symput
	symtable
	Index

