
Package ‘marginaleffects’
May 6, 2024

Title Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis
Tests

Version 0.20.0

Description Compute and plot predictions, slopes, marginal means, and comparisons (con-
trasts, risk ratios, odds, etc.) for over 100 classes of statistical and machine learning mod-
els in R. Conduct linear and non-linear hypothesis tests, or equivalence tests. Calculate uncer-
tainty estimates using the delta method, bootstrapping, or simulation-based inference.

License GPL (>= 3)

Copyright inst/COPYRIGHTS

Encoding UTF-8

URL https://marginaleffects.com/

BugReports https://github.com/vincentarelbundock/marginaleffects/issues

RoxygenNote 7.3.1

Depends R (>= 3.6.0)

Imports checkmate, data.table, generics, insight (>= 0.19.7), methods,
rlang, utils, Rcpp (>= 1.0.0)

Enhances knitr

LinkingTo Rcpp, RcppEigen

Suggests AER, Amelia, afex, aod, bench, betareg, BH, bife, biglm,
blme, boot, brglm2, brms, brmsmargins, broom, car, carData,
causaldata, clarify, cjoint, collapse, conflicted, countrycode,
covr, crch, DALEXtra, DCchoice, dbarts, distributional, dfidx,
dplyr, emmeans, equivalence, estimatr, fixest, flexsurv,
fmeffects, fontquiver, future, future.apply, fwb, gam, gamlss,
gamlss.dist, geepack, ggdist, ggokabeito, ggplot2, ggrepel,
glmmTMB, glmx, haven, here, itsadug, ivreg, kableExtra, lme4,
lmerTest, logistf, magrittr, MatchIt, MASS, mclogit, MCMCglmm,
missRanger, mgcv, mice, miceadds, mlogit, mlr3verse,
modelbased, modelsummary, nlme, nnet, numDeriv, optmatch,
ordinal, parameters, parsnip, partykit, patchwork, pkgdown,
phylolm, plm, polspline, poorman, posterior, pscl, purrr,

1

https://marginaleffects.com/
https://github.com/vincentarelbundock/marginaleffects/issues

2

quantreg, Rchoice, REndo, rcmdcheck, remotes, rmarkdown, rms,
robust, robustbase, robustlmm, rsample, rstanarm, rstantools,
rsvg, sampleSelection, sandwich, scam, spelling, speedglm,
survey, survival, svglite, systemfonts, tibble, tictoc,
tidymodels, tidyr, tidyverse, tinysnapshot, tinytable (>=
0.2.0), tinytest, titanic, truncreg, tsModel, withr, workflows,
yaml, xgboost, testthat (>= 3.0.0), altdoc

Collate 'RcppExports.R' 'backtransform.R' 'bootstrap_boot.R'
'bootstrap_fwb.R' 'bootstrap_rsample.R'
'bootstrap_simulation.R' 'broom.R' 'by.R' 'ci.R'
'comparisons.R' 'complete_levels.R' 'conformal.R' 'datagrid.R'
'deprecated.R' 'equivalence.R' 'get_coef.R'
'get_contrast_data.R' 'get_contrast_data_character.R'
'get_contrast_data_factor.R' 'get_contrast_data_logical.R'
'get_contrast_data_numeric.R' 'get_contrasts.R'
'get_group_names.R' 'get_hypothesis.R' 'get_jacobian.R'
'get_model_matrix.R' 'get_model_matrix_attribute.R'
'get_modeldata.R' 'get_predict.R' 'get_se_delta.R'
'get_term_labels.R' 'get_vcov.R' 'github_issue.R' 'hush.R'
'hypotheses.R' 'hypotheses_joint.R' 'hypothesis_helper.R'
'imputation.R' 'inferences.R' 'mean_or_mode.R' 'methods.R'
'set_coef.R' 'methods_MASS.R' 'methods_MCMCglmm.R'
'methods_Rchoice.R' 'methods_afex.R' 'methods_aod.R'
'methods_betareg.R' 'methods_bife.R' 'methods_biglm.R'
'methods_nnet.R' 'methods_brglm2.R' 'sanity_model.R'
'methods_brms.R' 'methods_crch.R' 'methods_dataframe.R'
'methods_dbarts.R' 'methods_fixest.R' 'methods_flexsurv.R'
'methods_gamlss.R' 'methods_glmmTMB.R' 'methods_glmx.R'
'methods_lme4.R' 'methods_mclogit.R' 'methods_mgcv.R'
'methods_mhurdle.R' 'methods_mlm.R' 'methods_mlogit.R'
'methods_mlr3.R' 'methods_nlme.R' 'methods_ordinal.R'
'methods_plm.R' 'methods_pscl.R' 'methods_quantreg.R'
'methods_rms.R' 'methods_robustlmm.R' 'methods_rstanarm.R'
'methods_sampleSelection.R' 'methods_scam.R' 'methods_stats.R'
'methods_survey.R' 'methods_survival.R' 'methods_tidymodels.R'
'methods_tobit1.R' 'modelarchive.R' 'myTryCatch.R' 'package.R'
'plot.R' 'plot_build.R' 'plot_comparisons.R'
'plot_predictions.R' 'plot_slopes.R' 'posterior_draws.R'
'predictions.R' 'print.R' 'recall.R' 'sanitize_comparison.R'
'sanitize_condition.R' 'sanitize_conf_level.R'
'sanitize_hypothesis.R' 'sanitize_interaction.R'
'sanitize_newdata.R' 'sanitize_numderiv.R' 'sanitize_type.R'
'sanitize_variables.R' 'sanitize_vcov.R' 'sanity.R'
'sanity_by.R' 'sanity_dots.R' 'settings.R' 'slopes.R' 'sort.R'
'tinytest.R' 'type_dictionary.R' 'unpack_matrix_cols.R'
'utils.R'

Language en-US

Config/testthat/edition 3

R topics documented: 3

NeedsCompilation yes

Author Vincent Arel-Bundock [aut, cre, cph]
(<https://orcid.org/0000-0003-2042-7063>),

Noah Greifer [ctb] (<https://orcid.org/0000-0003-3067-7154>),
Etienne Bacher [ctb] (<https://orcid.org/0000-0002-9271-5075>)

Maintainer Vincent Arel-Bundock <vincent.arel-bundock@umontreal.ca>

Repository CRAN

Date/Publication 2024-05-06 04:30:12 UTC

R topics documented:
comparisons . 3
datagrid . 16
hypotheses . 19
inferences . 25
plot_comparisons . 28
plot_predictions . 32
plot_slopes . 35
posterior_draws . 39
predictions . 40
print.marginaleffects . 51
slopes . 52
specify_hypothesis . 63

Index 64

comparisons Comparisons Between Predictions Made With Different Regressor Val-
ues

Description

Predict the outcome variable at different regressor values (e.g., college graduates vs. others), and
compare those predictions by computing a difference, ratio, or some other function. comparisons()
can return many quantities of interest, such as contrasts, differences, risk ratios, changes in log odds,
lift, slopes, elasticities, etc.

• comparisons(): unit-level (conditional) estimates.
• avg_comparisons(): average (marginal) estimates.

variables identifies the focal regressors whose "effect" we are interested in. comparison deter-
mines how predictions with different regressor values are compared (difference, ratio, odds, etc.).
The newdata argument and the datagrid() function control where statistics are evaluated in the
predictor space: "at observed values", "at the mean", "at representative values", etc.

See the comparisons vignette and package website for worked examples and case studies:

• https://marginaleffects.com/vignettes/comparisons.html

• https://marginaleffects.com/

https://orcid.org/0000-0003-2042-7063
https://orcid.org/0000-0003-3067-7154
https://orcid.org/0000-0002-9271-5075
https://marginaleffects.com/vignettes/comparisons.html
https://marginaleffects.com/

4 comparisons

Usage

comparisons(
model,
newdata = NULL,
variables = NULL,
comparison = "difference",
type = NULL,
vcov = TRUE,
by = FALSE,
conf_level = 0.95,
transform = NULL,
cross = FALSE,
wts = FALSE,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
numderiv = "fdforward",
...

)

avg_comparisons(
model,
newdata = NULL,
variables = NULL,
type = NULL,
vcov = TRUE,
by = TRUE,
conf_level = 0.95,
comparison = "difference",
transform = NULL,
cross = FALSE,
wts = FALSE,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
numderiv = "fdforward",
...

)

Arguments

model Model object

newdata Grid of predictor values at which we evaluate the comparisons.

comparisons 5

• Warning: Avoid modifying your dataset between fitting the model and call-
ing a marginaleffects function. This can sometimes lead to unexpected
results.

• NULL (default): Unit-level contrasts for each observed value in the dataset
(empirical distribution). The dataset is retrieved using insight::get_data(),
which tries to extract data from the environment. This may produce unex-
pected results if the original data frame has been altered since fitting the
model.

• data frame: Unit-level contrasts for each row of the newdata data frame.
• string:

– "mean": Contrasts at the Mean. Contrasts when each predictor is held
at its mean or mode.

– "median": Contrasts at the Median. Contrasts when each predictor is
held at its median or mode.

– "marginalmeans": Contrasts at Marginal Means.
– "tukey": Contrasts at Tukey’s 5 numbers.
– "grid": Contrasts on a grid of representative numbers (Tukey’s 5 num-

bers and unique values of categorical predictors).
• datagrid() call to specify a custom grid of regressors. For example:

– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.

– newdata = datagrid(mpg = fivenum): mpg variable held at Tukey’s
five numbers (using the fivenum function), and other regressors fixed
at their means or modes.

– See the Examples section and the datagrid documentation.
• subset() call with a single argument to select a subset of the dataset used

to fit the model, ex: newdata = subset(treatment == 1)

• dplyr::filter() call with a single argument to select a subset of the
dataset used to fit the model, ex: newdata = filter(treatment == 1)

variables Focal variables

• NULL: compute comparisons for all the variables in the model object (can
be slow).

• Character vector: subset of variables (usually faster).
• Named list: names identify the subset of variables of interest, and values

define the type of contrast to compute. Acceptable values depend on the
variable type:

– Factor or character variables:

* "reference": Each factor level is compared to the factor reference
(base) level

* "all": All combinations of observed levels

* "sequential": Each factor level is compared to the previous factor
level

* "pairwise": Each factor level is compared to all other levels

* "minmax": The highest and lowest levels of a factor.

6 comparisons

* "revpairwise", "revreference", "revsequential": inverse of the corre-
sponding hypotheses.

* Vector of length 2 with the two values to compare.

* Data frame with the same number of rows as newdata, with two
columns of "lo" and "hi" values to compare.

* Function that accepts a vector and returns a data frame with two
columns of "lo" and "hi" values to compare. See examples below.

– Logical variables:

* NULL: contrast between TRUE and FALSE

* Data frame with the same number of rows as newdata, with two
columns of "lo" and "hi" values to compare.

* Function that accepts a vector and returns a data frame with two
columns of "lo" and "hi" values to compare. See examples below.

– Numeric variables:

* Numeric of length 1: Forward contrast for a gap of x, computed
between the observed value and the observed value plus x. Users can
set a global option to get a "center" or "backward" contrast instead:
options(marginaleffects_contrast_direction="center")

* Numeric vector of length 2: Contrast between the largest and the
smallest elements of the x vector.

* Data frame with the same number of rows as newdata, with two
columns of "lo" and "hi" values to compare.

* Function that accepts a vector and returns a data frame with two
columns of "lo" and "hi" values to compare. See examples below.

* "iqr": Contrast across the interquartile range of the regressor.

* "sd": Contrast across one standard deviation around the regressor
mean.

* "2sd": Contrast across two standard deviations around the regressor
mean.

* "minmax": Contrast between the maximum and the minimum values
of the regressor.

– Examples:

* variables = list(gear = "pairwise", hp = 10)

* variables = list(gear = "sequential", hp = c(100, 120))

* variables = list(hp = \(x) data.frame(low = x - 5, high = x + 10))

* See the Examples section below for more.

comparison How should pairs of predictions be compared? Difference, ratio, odds ratio, or
user-defined functions.

• string: shortcuts to common contrast functions.
– Supported shortcuts strings: difference, differenceavg, differenceavgwts,

dydx, eyex, eydx, dyex, dydxavg, eyexavg, eydxavg, dyexavg, dy-
dxavgwts, eyexavgwts, eydxavgwts, dyexavgwts, ratio, ratioavg, ra-
tioavgwts, lnratio, lnratioavg, lnratioavgwts, lnor, lnoravg, lnoravgwts,
lift, liftavg, expdydx, expdydxavg, expdydxavgwts

comparisons 7

– See the Comparisons section below for definitions of each transforma-
tion.

• function: accept two equal-length numeric vectors of adjusted predictions
(hi and lo) and returns a vector of contrasts of the same length, or a unique
numeric value.

– See the Transformations section below for examples of valid functions.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

8 comparisons

transform string or function. Transformation applied to unit-level estimates and confidence
intervals just before the function returns results. Functions must accept a vector
and return a vector of the same length. Support string shortcuts: "exp", "ln"

cross • FALSE: Contrasts represent the change in adjusted predictions when one
predictor changes and all other variables are held constant.

• TRUE: Contrasts represent the changes in adjusted predictions when all the
predictors specified in the variables argument are manipulated simulta-
neously (a "cross-contrast").

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, a string formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.

comparisons 9

– "sequential": difference between an estimate and the estimate in the
next row.

– "meandev": difference between an estimate and the mean of all esti-
mates.

– "meanotherdev": difference between an estimate and the mean of all
other estimates, excluding the current one.

– "revpairwise", "revreference", "revsequential": inverse of the corre-
sponding hypotheses, as described above.

• Function:
– Accepts an argument x: object produced by a marginaleffects func-

tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

numderiv string or list of strings indicating the method to use to for the numeric differen-
tiation used in to compute delta method standard errors.

• "fdforward": finite difference method with forward differences
• "fdcenter": finite difference method with central differences (default)
• "richardson": Richardson extrapolation method
• Extra arguments can be specified by passing a list to the numDeriv argu-

ment, with the name of the method first and named arguments following,
ex: numderiv=list("fdcenter", eps = 1e-5). When an unknown argu-
ment is used, marginaleffects prints the list of valid arguments for each
method.

10 comparisons

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Value

A data.frame with one row per observation (per term/group) and several columns:

• rowid: row number of the newdata data frame

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• term: the variable whose marginal effect is computed

• dydx: slope of the outcome with respect to the term, for a given combination of predictor
values

• std.error: standard errors computed by via the delta method.

• p.value: p value associated to the estimate column. The null is determined by the hypothesis
argument (0 by default), and p values are computed before applying the transform argument.

• s.value: Shannon information transforms of p values. How many consecutive "heads" tosses
would provide the same amount of evidence (or "surprise") against the null hypothesis that
the coin is fair? The purpose of S is to calibrate the analyst’s intuition about the strength of
evidence encoded in p against a well-known physical phenomenon. See Greenland (2019) and
Cole et al. (2020).

• conf.low: lower bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

• conf.high: upper bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

See ?print.marginaleffects for printing options.

Functions

• avg_comparisons(): Average comparisons

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

comparisons 11

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://marginaleffects.com/vignettes/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://marginaleffects.com/vignettes/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

comparison argument functions

The following transformations can be applied by supplying one of the shortcut strings to the comparison
argument. hi is a vector of adjusted predictions for the "high" side of the contrast. lo is a vector of
adjusted predictions for the "low" side of the contrast. y is a vector of adjusted predictions for the
original data. x is the predictor in the original data. eps is the step size to use to compute derivatives
and elasticities.

Shortcut Function
difference \(hi, lo) hi - lo
differenceavg \(hi, lo) mean(hi - lo)
dydx \(hi, lo, eps) (hi - lo)/eps
eyex \(hi, lo, eps, y, x) (hi - lo)/eps * (x/y)
eydx \(hi, lo, eps, y, x) ((hi - lo)/eps)/y

12 comparisons

dyex \(hi, lo, eps, x) ((hi - lo)/eps) * x
dydxavg \(hi, lo, eps) mean((hi - lo)/eps)
eyexavg \(hi, lo, eps, y, x) mean((hi - lo)/eps * (x/y))
eydxavg \(hi, lo, eps, y, x) mean(((hi - lo)/eps)/y)
dyexavg \(hi, lo, eps, x) mean(((hi - lo)/eps) * x)
ratio \(hi, lo) hi/lo
ratioavg \(hi, lo) mean(hi)/mean(lo)
lnratio \(hi, lo) log(hi/lo)
lnratioavg \(hi, lo) log(mean(hi)/mean(lo))
lnor \(hi, lo) log((hi/(1 - hi))/(lo/(1 - lo)))
lnoravg \(hi, lo) log((mean(hi)/(1 - mean(hi)))/(mean(lo)/(1 - mean(lo))))
lift \(hi, lo) (hi - lo)/lo
liftavg \(hi, lo) (mean(hi - lo))/mean(lo)
expdydx \(hi, lo, eps) ((exp(hi) - exp(lo))/exp(eps))/eps
expdydxavg \(hi, lo, eps) mean(((exp(hi) - exp(lo))/exp(eps))/eps)

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument
or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

comparisons 13

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Prediction types

The type argument determines the scale of the predictions used to compute quantities of interest
with functions from the marginaleffects package. Admissible values for type depend on the
model object. When users specify an incorrect value for type, marginaleffects will raise an
informative error with a list of valid type values for the specific model object. The first entry in the
list in that error message is the default type.

The invlink(link) is a special type defined by marginaleffects. It is available for some (but not
all) models and functions. With this link type, we first compute predictions on the link scale, then we
use the inverse link function to backtransform the predictions to the response scale. This is useful for
models with non-linear link functions as it can ensure that confidence intervals stay within desirable
bounds, ex: 0 to 1 for a logit model. Note that an average of estimates with type="invlink(link)"
will not always be equivalent to the average of estimates with type="response".

Some of the most common type values are:

response, link, E, Ep, average, class, conditional, count, cum.prob, cumhaz, cumprob, density,
detection, disp, ev, expected, expvalue, fitted, hazard, invlink(link), latent, latent_N, linear, lin-
ear.predictor, linpred, location, lp, mean, numeric, p, ppd, pr, precision, prediction, prob, proba-
bility, probs, quantile, risk, rmst, scale, survival, unconditional, utility, variance, xb, zero, zlink,
zprob

Order of operations

Behind the scenes, the arguments of marginaleffects functions are evaluated in this order:

1. newdata

2. variables

3. comparison and slopes

4. by

5. vcov

6. hypothesis

7. transform

14 comparisons

Parallel computation

The slopes() and comparisons() functions can use parallelism to speed up computation. Oper-
ations are parallelized for the computation of standard errors, at the model coefficient level. There
is always considerable overhead when using parallel computation, mainly involved in passing the
whole dataset to the different processes. Thus, parallel computation is most likely to be useful when
the model includes many parameters and the dataset is relatively small.

Warning: In many cases, parallel processing will not be useful at all.

To activate parallel computation, users must load the future.apply package, call plan() function,
and set a global option. For example:

library(future.apply)
plan("multicore", workers = 4)
options(marginaleffects_parallel = TRUE)

slopes(model)

To disable parallelism in marginaleffects altogether, you can set a global option:

options(marginaleffects_parallel = FALSE)

References

• Greenland S. 2019. "Valid P-Values Behave Exactly as They Should: Some Misleading Crit-
icisms of P-Values and Their Resolution With S-Values." The American Statistician. 73(S1):
106–114.

• Cole, Stephen R, Jessie K Edwards, and Sander Greenland. 2020. "Surprise!" American
Journal of Epidemiology 190 (2): 191–93. https://doi.org/10.1093/aje/kwaa136

Examples

library(marginaleffects)

Linear model
tmp <- mtcars
tmp$am <- as.logical(tmp$am)
mod <- lm(mpg ~ am + factor(cyl), tmp)
avg_comparisons(mod, variables = list(cyl = "reference"))
avg_comparisons(mod, variables = list(cyl = "sequential"))
avg_comparisons(mod, variables = list(cyl = "pairwise"))

GLM with different scale types
mod <- glm(am ~ factor(gear), data = mtcars)
avg_comparisons(mod, type = "response")
avg_comparisons(mod, type = "link")

Contrasts at the mean
comparisons(mod, newdata = "mean")

comparisons 15

Contrasts between marginal means
comparisons(mod, newdata = "marginalmeans")

Contrasts at user-specified values
comparisons(mod, newdata = datagrid(am = 0, gear = tmp$gear))
comparisons(mod, newdata = datagrid(am = unique, gear = max))

m <- lm(mpg ~ hp + drat + factor(cyl) + factor(am), data = mtcars)
comparisons(m, variables = "hp", newdata = datagrid(FUN_factor = unique, FUN_numeric = median))

Numeric contrasts
mod <- lm(mpg ~ hp, data = mtcars)
avg_comparisons(mod, variables = list(hp = 1))
avg_comparisons(mod, variables = list(hp = 5))
avg_comparisons(mod, variables = list(hp = c(90, 100)))
avg_comparisons(mod, variables = list(hp = "iqr"))
avg_comparisons(mod, variables = list(hp = "sd"))
avg_comparisons(mod, variables = list(hp = "minmax"))

using a function to specify a custom difference in one regressor
dat <- mtcars
dat$new_hp <- 49 * (dat$hp - min(dat$hp)) / (max(dat$hp) - min(dat$hp)) + 1
modlog <- lm(mpg ~ log(new_hp) + factor(cyl), data = dat)
fdiff <- \(x) data.frame(x, x + 10)
avg_comparisons(modlog, variables = list(new_hp = fdiff))

Adjusted Risk Ratio: see the contrasts vignette
mod <- glm(vs ~ mpg, data = mtcars, family = binomial)
avg_comparisons(mod, comparison = "lnratioavg", transform = exp)

Adjusted Risk Ratio: Manual specification of the `comparison`
avg_comparisons(

mod,
comparison = function(hi, lo) log(mean(hi) / mean(lo)),
transform = exp)

cross contrasts
mod <- lm(mpg ~ factor(cyl) * factor(gear) + hp, data = mtcars)
avg_comparisons(mod, variables = c("cyl", "gear"), cross = TRUE)

variable-specific contrasts
avg_comparisons(mod, variables = list(gear = "sequential", hp = 10))

hypothesis test: is the `hp` marginal effect at the mean equal to the `drat` marginal effect
mod <- lm(mpg ~ wt + drat, data = mtcars)

comparisons(
mod,
newdata = "mean",
hypothesis = "wt = drat")

same hypothesis test using row indices
comparisons(

16 datagrid

mod,
newdata = "mean",
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
comparisons(

mod,
newdata = "mean",
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

comparisons(
mod,
newdata = "mean",
hypothesis = lc)

Effect of a 1 group-wise standard deviation change
First we calculate the SD in each group of `cyl`
Second, we use that SD as the treatment size in the `variables` argument
library(dplyr)
mod <- lm(mpg ~ hp + factor(cyl), mtcars)
tmp <- mtcars %>%

group_by(cyl) %>%
mutate(hp_sd = sd(hp))

avg_comparisons(mod,
variables = list(hp = function(x) data.frame(x, x + tmp$hp_sd)),
by = "cyl")

`by` argument
mod <- lm(mpg ~ hp * am * vs, data = mtcars)
comparisons(mod, by = TRUE)

mod <- lm(mpg ~ hp * am * vs, data = mtcars)
avg_comparisons(mod, variables = "hp", by = c("vs", "am"))

library(nnet)
mod <- multinom(factor(gear) ~ mpg + am * vs, data = mtcars, trace = FALSE)
by <- data.frame(

group = c("3", "4", "5"),
by = c("3,4", "3,4", "5"))

comparisons(mod, type = "probs", by = by)

datagrid Data grids

datagrid 17

Description

Generate a data grid of user-specified values for use in the newdata argument of the predictions(),
comparisons(), and slopes() functions. This is useful to define where in the predictor space we
want to evaluate the quantities of interest. Ex: the predicted outcome or slope for a 37 year old
college graduate.

Usage

datagrid(
...,
model = NULL,
newdata = NULL,
by = NULL,
grid_type = "mean_or_mode",
response = FALSE,
FUN_character = NULL,
FUN_factor = NULL,
FUN_logical = NULL,
FUN_numeric = NULL,
FUN_integer = NULL,
FUN_binary = NULL,
FUN_other = NULL

)

Arguments

... named arguments with vectors of values or functions for user-specified vari-
ables.

• Functions are applied to the variable in the model dataset or newdata, and
must return a vector of the appropriate type.

• Character vectors are automatically transformed to factors if necessary.
+The output will include all combinations of these variables (see Exam-
ples below.)

model Model object

newdata data.frame (one and only one of the model and newdata arguments can be used.)

by character vector with grouping variables within which FUN_* functions are ap-
plied to create "sub-grids" with unspecified variables.

grid_type character. Determines the functions to apply to each variable. The defaults can
be overridden by defining individual variables explicitly in ..., or by supplying
a function to one of the FUN_* arguments.

• "mean_or_mode": Character, factor, logical, and binary variables are set to
their modes. Numeric, integer, and other variables are set to their means.

• "balanced": Each unique level of character, factor, logical, and binary vari-
ables are preserved. Numeric, integer, and other variables are set to their
means. Warning: When there are many variables and many levels per vari-
able, a balanced grid can be very large. In those cases, it is better to use

18 datagrid

grid_type="mean_or_mode" and to specify the unique levels of a subset
of named variables explicitly.

• "counterfactual": the entire dataset is duplicated for each combination of
the variable values specified in Variables not explicitly supplied to
datagrid() are set to their observed values in the original dataset.

response Logical should the response variable be included in the grid, even if it is not
specified explicitly.

FUN_character the function to be applied to character variables.

FUN_factor the function to be applied to factor variables. This only applies if the variable in
the original data is a factor. For variables converted to factor in a model-fitting
formula, for example, FUN_character is used.

FUN_logical the function to be applied to logical variables.

FUN_numeric the function to be applied to numeric variables.

FUN_integer the function to be applied to integer variables.

FUN_binary the function to be applied to binary variables.

FUN_other the function to be applied to other variable types.

Details

If datagrid is used in a predictions(), comparisons(), or slopes() call as the newdata argu-
ment, the model is automatically inserted in the model argument of datagrid() call, and users do
not need to specify either the model or newdata arguments. The same behavior will occur when the
value supplied to newdata= is a function call which starts with "datagrid". This is intended to allow
users to create convenience shortcuts like:

library(marginaleffects)
mod <- lm(mpg ~ am + vs + factor(cyl) + hp, mtcars)
datagrid_bal <- function(...) datagrid(..., grid_type = "balanced")
predictions(model, newdata = datagrid_bal(cyl = 4))

If users supply a model, the data used to fit that model is retrieved using the insight::get_data
function.

Value

A data.frame in which each row corresponds to one combination of the named predictors supplied
by the user via the ... dots. Variables which are not explicitly defined are held at their mean or
mode.

Examples

The output only has 2 rows, and all the variables except `hp` are at their
mean or mode.
datagrid(newdata = mtcars, hp = c(100, 110))

We get the same result by feeding a model instead of a data.frame
mod <- lm(mpg ~ hp, mtcars)

hypotheses 19

datagrid(model = mod, hp = c(100, 110))

Use in `marginaleffects` to compute "Typical Marginal Effects". When used
in `slopes()` or `predictions()` we do not need to specify the
#`model` or `newdata` arguments.
slopes(mod, newdata = datagrid(hp = c(100, 110)))

datagrid accepts functions
datagrid(hp = range, cyl = unique, newdata = mtcars)
comparisons(mod, newdata = datagrid(hp = fivenum))

The full dataset is duplicated with each observation given counterfactual
values of 100 and 110 for the `hp` variable. The original `mtcars` includes
32 rows, so the resulting dataset includes 64 rows.
dg <- datagrid(newdata = mtcars, hp = c(100, 110), grid_type = "counterfactual")
nrow(dg)

We get the same result by feeding a model instead of a data.frame
mod <- lm(mpg ~ hp, mtcars)
dg <- datagrid(model = mod, hp = c(100, 110), grid_type = "counterfactual")
nrow(dg)

hypotheses (Non-)Linear Tests for Null Hypotheses, Joint Hypotheses, Equiva-
lence, Non Superiority, and Non Inferiority

Description

Uncertainty estimates are calculated as first-order approximate standard errors for linear or non-
linear functions of a vector of random variables with known or estimated covariance matrix. In that
sense, hypotheses emulates the behavior of the excellent and well-established car::deltaMethod
and car::linearHypothesis functions, but it supports more models; requires fewer dependencies;
expands the range of tests to equivalence and superiority/inferiority; and offers convenience features
like robust standard errors.

To learn more, read the hypothesis tests vignette, visit the package website, or scroll down this page
for a full list of vignettes:

• https://marginaleffects.com/vignettes/hypothesis.html

• https://marginaleffects.com/

Warning #1: Tests are conducted directly on the scale defined by the type argument. For some
models, it can make sense to conduct hypothesis or equivalence tests on the "link" scale instead of
the "response" scale which is often the default.

Warning #2: For hypothesis tests on objects produced by the marginaleffects package, it is safer
to use the hypothesis argument of the original function. Using hypotheses() may not work in
certain environments, in lists, or when working programmatically with *apply style functions.

Warning #3: The tests assume that the hypothesis expression is (approximately) normally dis-
tributed, which for non-linear functions of the parameters may not be realistic. More reliable confi-
dence intervals can be obtained using the inferences() function with method = "boot".

https://marginaleffects.com/vignettes/hypothesis.html
https://marginaleffects.com/

20 hypotheses

Usage

hypotheses(
model,
hypothesis = NULL,
vcov = NULL,
conf_level = 0.95,
df = NULL,
equivalence = NULL,
joint = FALSE,
joint_test = "f",
numderiv = "fdforward",
...

)

Arguments

model Model object or object generated by the comparisons(), slopes(), or predictions()
functions.

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, a string formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.

hypotheses 21

– "meanotherdev": difference between an estimate and the mean of all
other estimates, excluding the current one.

– "revpairwise", "revreference", "revsequential": inverse of the corre-
sponding hypotheses, as described above.

• Function:
– Accepts an argument x: object produced by a marginaleffects func-

tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

df Degrees of freedom used to compute p values and confidence intervals. A sin-
gle numeric value between 1 and Inf. When using joint_test="f", the df
argument should be a numeric vector of length 2.

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

joint Joint test of statistical significance. The null hypothesis value can be set using
the hypothesis argument.

• FALSE: Hypotheses are not tested jointly.

22 hypotheses

• TRUE: All parameters are tested jointly.
• String: A regular expression to match parameters to be tested jointly. grep(joint,
perl = TRUE)

• Character vector of parameter names to be tested. Characters refer to the
names of the vector returned by coef(object).

• Integer vector of indices. Which parameters positions to test jointly.

joint_test A character string specifying the type of test, either "f" or "chisq". The null
hypothesis is set by the hypothesis argument, with default null equal to 0 for
all parameters.

numderiv string or list of strings indicating the method to use to for the numeric differen-
tiation used in to compute delta method standard errors.

• "fdforward": finite difference method with forward differences
• "fdcenter": finite difference method with central differences (default)
• "richardson": Richardson extrapolation method
• Extra arguments can be specified by passing a list to the numDeriv argu-

ment, with the name of the method first and named arguments following,
ex: numderiv=list("fdcenter", eps = 1e-5). When an unknown argu-
ment is used, marginaleffects prints the list of valid arguments for each
method.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Joint hypothesis tests

The test statistic for the joint Wald test is calculated as (R * theta_hat - r)’ * inv(R * V_hat * R’) *
(R * theta_hat - r) / Q, where theta_hat is the vector of estimated parameters, V_hat is the estimated
covariance matrix, R is a Q x P matrix for testing Q hypotheses on P parameters, r is a Q x 1 vector
for the null hypothesis, and Q is the number of rows in R. If the test is a Chi-squared test, the test
statistic is not normalized.

The p-value is then calculated based on either the F-distribution (for F-test) or the Chi-squared
distribution (for Chi-squared test). For the F-test, the degrees of freedom are Q and (n - P), where
n is the sample size and P is the number of parameters. For the Chi-squared test, the degrees of
freedom are Q.

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

hypotheses 23

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp + wt + factor(cyl), data = mtcars)

hypotheses(mod)

Test of equality between coefficients
hypotheses(mod, hypothesis = "hp = wt")

Non-linear function
hypotheses(mod, hypothesis = "exp(hp + wt) = 0.1")

Robust standard errors
hypotheses(mod, hypothesis = "hp = wt", vcov = "HC3")

b1, b2, ... shortcuts can be used to identify the position of the
parameters of interest in the output of
hypotheses(mod, hypothesis = "b2 = b3")

wildcard
hypotheses(mod, hypothesis = "b* / b2 = 1")

term names with special characters have to be enclosed in backticks
hypotheses(mod, hypothesis = "`factor(cyl)6` = `factor(cyl)8`")

mod2 <- lm(mpg ~ hp * drat, data = mtcars)
hypotheses(mod2, hypothesis = "`hp:drat` = drat")

predictions(), comparisons(), and slopes()
mod <- glm(am ~ hp + mpg, data = mtcars, family = binomial)
cmp <- comparisons(mod, newdata = "mean")
hypotheses(cmp, hypothesis = "b1 = b2")

24 hypotheses

mfx <- slopes(mod, newdata = "mean")
hypotheses(cmp, hypothesis = "b2 = 0.2")

pre <- predictions(mod, newdata = datagrid(hp = 110, mpg = c(30, 35)))
hypotheses(pre, hypothesis = "b1 = b2")

The `hypothesis` argument can be used to compute standard errors for fitted values
mod <- glm(am ~ hp + mpg, data = mtcars, family = binomial)

f <- function(x) predict(x, type = "link", newdata = mtcars)
p <- hypotheses(mod, hypothesis = f)
head(p)

f <- function(x) predict(x, type = "response", newdata = mtcars)
p <- hypotheses(mod, hypothesis = f)
head(p)

Complex aggregation
Step 1: Collapse predicted probabilities by outcome level, for each individual
Step 2: Take the mean of the collapsed probabilities by group and `cyl`
library(dplyr)
library(MASS)
library(dplyr)

dat <- transform(mtcars, gear = factor(gear))
mod <- polr(gear ~ factor(cyl) + hp, dat)

aggregation_fun <- function(x) {
predictions(x, vcov = FALSE) |>

mutate(group = ifelse(group %in% c("3", "4"), "3 & 4", "5")) |>
summarize(estimate = sum(estimate), .by = c("rowid", "cyl", "group")) |>
summarize(estimate = mean(estimate), .by = c("cyl", "group")) |>
rename(term = cyl)

}

hypotheses(mod, hypothesis = aggregation_fun)

Equivalence, non-inferiority, and non-superiority tests
mod <- lm(mpg ~ hp + factor(gear), data = mtcars)
p <- predictions(mod, newdata = "median")
hypotheses(p, equivalence = c(17, 18))

mfx <- avg_slopes(mod, variables = "hp")
hypotheses(mfx, equivalence = c(-.1, .1))

cmp <- avg_comparisons(mod, variables = "gear", hypothesis = "pairwise")
hypotheses(cmp, equivalence = c(0, 10))

joint hypotheses: character vector
model <- lm(mpg ~ as.factor(cyl) * hp, data = mtcars)
hypotheses(model, joint = c("as.factor(cyl)6:hp", "as.factor(cyl)8:hp"))

joint hypotheses: regular expression

inferences 25

hypotheses(model, joint = "cyl")

joint hypotheses: integer indices
hypotheses(model, joint = 2:3)

joint hypotheses: different null hypotheses
hypotheses(model, joint = 2:3, hypothesis = 1)
hypotheses(model, joint = 2:3, hypothesis = 1:2)

joint hypotheses: marginaleffects object
cmp <- avg_comparisons(model)
hypotheses(cmp, joint = "cyl")

inferences (EXPERIMENTAL) Bootstrap, Conformal, and Simulation-Based In-
ference

Description

Warning: This function is experimental. It may be renamed, the user interface may change, or the
functionality may migrate to arguments in other marginaleffects functions.

Apply this function to a marginaleffects object to change the inferential method used to compute
uncertainty estimates.

Usage

inferences(
x,
method,
R = 1000,
conf_type = "perc",
conformal_test = NULL,
conformal_calibration = NULL,
conformal_score = "residual_abs",
...

)

Arguments

x Object produced by one of the core marginaleffects functions.

method String

• "delta": delta method standard errors
• "boot" package
• "fwb": fractional weighted bootstrap
• "rsample" package
• "simulation" from a multivariate normal distribution (Krinsky & Robb, 1986)

26 inferences

• "mi" multiple imputation for missing data
• "conformal_split": prediction intervals using split conformal prediction (see

Angelopoulos & Bates, 2022)
• "conformal_cv+": prediction intervals using cross-validation+ conformal

prediction (see Barber et al., 2020)

R Number of resamples, simulations, or cross-validation folds.

conf_type String: type of bootstrap interval to construct.

• boot: "perc", "norm", "basic", or "bca"
• fwb: "perc", "norm", "basic", "bc", or "bca"
• rsample: "perc" or "bca"
• simulation: argument ignored.

conformal_test Data frame of test data for conformal prediction.
conformal_calibration

Data frame of calibration data for split conformal prediction (method="conformal_split).
conformal_score

String. Warning: The type argument in predictions() must generate predic-
tions which are on the same scale as the outcome variable. Typically, this means
that type must be "response" or "probs".

• "residual_abs" or "residual_sq" for regression tasks (numeric outcome)
• "softmax" for classification tasks (when predictions() returns a group

columns, such as multinomial or ordinal logit models.

... • If method="boot", additional arguments are passed to boot::boot().
• If method="fwb", additional arguments are passed to fwb::fwb().
• If method="rsample", additional arguments are passed to rsample::bootstraps().
• Additional arguments are ignored for all other methods.

Details

When method="simulation", we conduct simulation-based inference following the method dis-
cussed in Krinsky & Robb (1986):

1. Draw R sets of simulated coefficients from a multivariate normal distribution with mean equal
to the original model’s estimated coefficients and variance equal to the model’s variance-
covariance matrix (classical, "HC3", or other).

2. Use the R sets of coefficients to compute R sets of estimands: predictions, comparisons, slopes,
or hypotheses.

3. Take quantiles of the resulting distribution of estimands to obtain a confidence interval and the
standard deviation of simulated estimates to estimate the standard error.

When method="fwb", drawn weights are supplied to the model fitting function’s weights argu-
ment; if the model doesn’t accept non-integer weights, this method should not be used. If weights
were included in the original model fit, they are extracted by weights() and multiplied by the
drawn weights. These weights are supplied to the wts argument of the estimation function (e.g.,
comparisons()).

inferences 27

Value

A marginaleffects object with simulation or bootstrap resamples and objects attached.

References

Krinsky, I., and A. L. Robb. 1986. “On Approximating the Statistical Properties of Elasticities.”
Review of Economics and Statistics 68 (4): 715–9.

King, Gary, Michael Tomz, and Jason Wittenberg. "Making the most of statistical analyses: Im-
proving interpretation and presentation." American journal of political science (2000): 347-361

Dowd, Bryan E., William H. Greene, and Edward C. Norton. "Computation of standard errors."
Health services research 49.2 (2014): 731-750.

Angelopoulos, Anastasios N., and Stephen Bates. 2022. "A Gentle Introduction to Conformal Pre-
diction and Distribution-Free Uncertainty Quantification." arXiv. https://doi.org/10.48550/arXiv.2107.07511.

Barber, Rina Foygel, Emmanuel J. Candes, Aaditya Ramdas, and Ryan J. Tibshirani. 2020. “Pre-
dictive Inference with the Jackknife+.” arXiv. http://arxiv.org/abs/1905.02928.

Examples

Not run:
library(marginaleffects)
library(magrittr)
set.seed(1024)
mod <- lm(Sepal.Length ~ Sepal.Width * Species, data = iris)

bootstrap
avg_predictions(mod, by = "Species") %>%

inferences(method = "boot")

avg_predictions(mod, by = "Species") %>%
inferences(method = "rsample")

Fractional (bayesian) bootstrap
avg_slopes(mod, by = "Species") %>%

inferences(method = "fwb") %>%
posterior_draws("rvar") %>%
data.frame()

Simulation-based inference
slopes(mod) %>%

inferences(method = "simulation") %>%
head()

End(Not run)

28 plot_comparisons

plot_comparisons Plot Conditional or Marginal Comparisons

Description

Plot comparisons on the y-axis against values of one or more predictors (x-axis, colors/shapes, and
facets).

The by argument is used to plot marginal comparisons, that is, comparisons made on the original
data, but averaged by subgroups. This is analogous to using the by argument in the comparisons()
function.

The condition argument is used to plot conditional comparisons, that is, comparisons made on a
user-specified grid. This is analogous to using the newdata argument and datagrid() function in
a comparisons() call. All variables whose values are not specified explicitly are treated as usual
by datagrid(), that is, they are held at their mean or mode (or rounded mean for integers). This
includes grouping variables in mixed-effects models, so analysts who fit such models may want to
specify the groups of interest using the condition argument, or supply model-specific arguments
to compute population-level estimates. See details below.

See the "Plots" vignette and website for tutorials and information on how to customize plots:

• https://marginaleffects.com/vignettes/plot.html

• https://marginaleffects.com

Usage

plot_comparisons(
model,
variables = NULL,
condition = NULL,
by = NULL,
newdata = NULL,
type = "response",
vcov = NULL,
conf_level = 0.95,
wts = FALSE,
comparison = "difference",
transform = NULL,
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

variables Name of the variable whose contrast we want to plot on the y-axis.

plot_comparisons 29

condition Conditional slopes

• Character vector (max length 4): Names of the predictors to display.
• Named list (max length 4): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facet (wrap if no fourth variable, otherwise

cols of grid). 4: facet (rows of grid).
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
comparisons() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"

30 plot_comparisons

– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

comparison How should pairs of predictions be compared? Difference, ratio, odds ratio, or
user-defined functions.

• string: shortcuts to common contrast functions.
– Supported shortcuts strings: difference, differenceavg, differenceavgwts,

dydx, eyex, eydx, dyex, dydxavg, eyexavg, eydxavg, dyexavg, dy-
dxavgwts, eyexavgwts, eydxavgwts, dyexavgwts, ratio, ratioavg, ra-
tioavgwts, lnratio, lnratioavg, lnratioavgwts, lnor, lnoravg, lnoravgwts,
lift, liftavg, expdydx, expdydxavg, expdydxavgwts

– See the Comparisons section below for definitions of each transforma-
tion.

• function: accept two equal-length numeric vectors of adjusted predictions
(hi and lo) and returns a vector of contrasts of the same length, or a unique
numeric value.

– See the Transformations section below for examples of valid functions.

transform string or function. Transformation applied to unit-level estimates and confidence
intervals just before the function returns results. Functions must accept a vector
and return a vector of the same length. Support string shortcuts: "exp", "ln"

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

plot_comparisons 31

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Value

A ggplot2 object

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Examples

mod <- lm(mpg ~ hp * drat * factor(am), data = mtcars)

plot_comparisons(mod, variables = "hp", condition = "drat")

plot_comparisons(mod, variables = "hp", condition = c("drat", "am"))

plot_comparisons(mod, variables = "hp", condition = list("am", "drat" = 3:5))

plot_comparisons(mod, variables = "am", condition = list("hp", "drat" = range))

plot_comparisons(mod, variables = "am", condition = list("hp", "drat" = "threenum"))

32 plot_predictions

plot_predictions Plot Conditional or Marginal Predictions

Description

Plot predictions on the y-axis against values of one or more predictors (x-axis, colors/shapes, and
facets).

The by argument is used to plot marginal predictions, that is, predictions made on the original data,
but averaged by subgroups. This is analogous to using the by argument in the predictions()
function.

The condition argument is used to plot conditional predictions, that is, predictions made on a
user-specified grid. This is analogous to using the newdata argument and datagrid() function in
a predictions() call. All variables whose values are not specified explicitly are treated as usual
by datagrid(), that is, they are held at their mean or mode (or rounded mean for integers). This
includes grouping variables in mixed-effects models, so analysts who fit such models may want to
specify the groups of interest using the condition argument, or supply model-specific arguments
to compute population-level estimates. See details below.

See the "Plots" vignette and website for tutorials and information on how to customize plots:

• https://marginaleffects.com/vignettes/plot.html

• https://marginaleffects.com

Usage

plot_predictions(
model,
condition = NULL,
by = NULL,
newdata = NULL,
type = NULL,
vcov = NULL,
conf_level = 0.95,
wts = FALSE,
transform = NULL,
points = 0,
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

condition Conditional predictions

plot_predictions 33

• Character vector (max length 4): Names of the predictors to display.
• Named list (max length 4): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values
– Shortcut strings for common reference values: "minmax", "quartile",

"threenum"
• 1: x-axis. 2: color/shape. 3: facet (wrap if no fourth variable, otherwise

cols of grid). 4: facet (rows of grid).
• Numeric variables in positions 2 and 3 are summarized by Tukey’s five

numbers ?stats::fivenum

by Marginal predictions

• Character vector (max length 3): Names of the categorical predictors to
marginalize across.

• 1: x-axis. 2: color. 3: facets.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
predictions() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

34 plot_predictions

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

transform A function applied to unit-level adjusted predictions and confidence intervals
just before the function returns results. For bayesian models, this function is
applied to individual draws from the posterior distribution, before computing
summaries.

points Number between 0 and 1 which controls the transparency of raw data points. 0
(default) does not display any points.

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Value

A ggplot2 object or data frame (if draw=FALSE)

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod

plot_slopes 35

glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB
allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Prediction types

The type argument determines the scale of the predictions used to compute quantities of interest
with functions from the marginaleffects package. Admissible values for type depend on the
model object. When users specify an incorrect value for type, marginaleffects will raise an
informative error with a list of valid type values for the specific model object. The first entry in the
list in that error message is the default type.

The invlink(link) is a special type defined by marginaleffects. It is available for some (but not
all) models and functions. With this link type, we first compute predictions on the link scale, then we
use the inverse link function to backtransform the predictions to the response scale. This is useful for
models with non-linear link functions as it can ensure that confidence intervals stay within desirable
bounds, ex: 0 to 1 for a logit model. Note that an average of estimates with type="invlink(link)"
will not always be equivalent to the average of estimates with type="response".

Some of the most common type values are:

response, link, E, Ep, average, class, conditional, count, cum.prob, cumhaz, cumprob, density,
detection, disp, ev, expected, expvalue, fitted, hazard, invlink(link), latent, latent_N, linear, lin-
ear.predictor, linpred, location, lp, mean, numeric, p, ppd, pr, precision, prediction, prob, proba-
bility, probs, quantile, risk, rmst, scale, survival, unconditional, utility, variance, xb, zero, zlink,
zprob

Examples

mod <- lm(mpg ~ hp + wt, data = mtcars)
plot_predictions(mod, condition = "wt")

mod <- lm(mpg ~ hp * wt * am, data = mtcars)
plot_predictions(mod, condition = c("hp", "wt"))

plot_predictions(mod, condition = list("hp", wt = "threenum"))

plot_predictions(mod, condition = list("hp", wt = range))

plot_slopes Plot Conditional or Marginal Slopes

36 plot_slopes

Description

Plot slopes on the y-axis against values of one or more predictors (x-axis, colors/shapes, and facets).

The by argument is used to plot marginal slopes, that is, slopes made on the original data, but
averaged by subgroups. This is analogous to using the by argument in the slopes() function.

The condition argument is used to plot conditional slopes, that is, slopes computed on a user-
specified grid. This is analogous to using the newdata argument and datagrid() function in
a slopes() call. All variables whose values are not specified explicitly are treated as usual by
datagrid(), that is, they are held at their mean or mode (or rounded mean for integers). This
includes grouping variables in mixed-effects models, so analysts who fit such models may want to
specify the groups of interest using the condition argument, or supply model-specific arguments
to compute population-level estimates. See details below. See the "Plots" vignette and website for
tutorials and information on how to customize plots:

• https://marginaleffects.com/vignettes/plot.html

• https://marginaleffects.com

Usage

plot_slopes(
model,
variables = NULL,
condition = NULL,
by = NULL,
newdata = NULL,
type = "response",
vcov = NULL,
conf_level = 0.95,
wts = FALSE,
slope = "dydx",
rug = FALSE,
gray = FALSE,
draw = TRUE,
...

)

Arguments

model Model object

variables Name of the variable whose marginal effect (slope) we want to plot on the y-
axis.

condition Conditional slopes

• Character vector (max length 4): Names of the predictors to display.
• Named list (max length 4): List names correspond to predictors. List ele-

ments can be:
– Numeric vector
– Function which returns a numeric vector or a set of unique categorical

values

plot_slopes 37

– Shortcut strings for common reference values: "minmax", "quartile",
"threenum"

• 1: x-axis. 2: color/shape. 3: facet (wrap if no fourth variable, otherwise
cols of grid). 4: facet (rows of grid).

• Numeric variables in positions 2 and 3 are summarized by Tukey’s five
numbers ?stats::fivenum.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

newdata When newdata is NULL, the grid is determined by the condition argument.
When newdata is not NULL, the argument behaves in the same way as in the
slopes() function.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix

38 plot_slopes

• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

slope string indicates the type of slope or (semi-)elasticity to compute:

• "dydx": dY/dX
• "eyex": dY/dX * Y / X
• "eydx": dY/dX * Y
• "dyex": dY/dX / X
• Y is the predicted value of the outcome; X is the observed value of the

predictor.

rug TRUE displays tick marks on the axes to mark the distribution of raw data.

gray FALSE grayscale or color plot

draw TRUE returns a ggplot2 plot. FALSE returns a data.frame of the underlying
data.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Value

A ggplot2 object

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

posterior_draws 39

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp * drat * factor(am), data = mtcars)

plot_slopes(mod, variables = "hp", condition = "drat")

plot_slopes(mod, variables = "hp", condition = c("drat", "am"))

plot_slopes(mod, variables = "hp", condition = list("am", "drat" = 3:5))

plot_slopes(mod, variables = "am", condition = list("hp", "drat" = range))

plot_slopes(mod, variables = "am", condition = list("hp", "drat" = "threenum"))

posterior_draws Extract Posterior Draws or Bootstrap Resamples from
marginaleffects Objects

Description

Extract Posterior Draws or Bootstrap Resamples from marginaleffects Objects

Usage

posterior_draws(x, shape = "long")

Arguments

x An object produced by a marginaleffects package function, such as predictions(),
avg_slopes(), hypotheses(), etc.

shape string indicating the shape of the output format:

• "long": long format data frame

40 predictions

• "DxP": Matrix with draws as rows and parameters as columns
• "PxD": Matrix with draws as rows and parameters as columns
• "rvar": Random variable datatype (see posterior package documenta-

tion).

Value

A data.frame with drawid and draw columns.

predictions Predictions

Description

Outcome predicted by a fitted model on a specified scale for a given combination of values of the
predictor variables, such as their observed values, their means, or factor levels (a.k.a. "reference
grid").

• predictions(): unit-level (conditional) estimates.

• avg_predictions(): average (marginal) estimates.

The newdata argument and the datagrid() function can be used to control where statistics are
evaluated in the predictor space: "at observed values", "at the mean", "at representative values", etc.

See the predictions vignette and package website for worked examples and case studies:

• https://marginaleffects.com/vignettes/predictions.html

• https://marginaleffects.com/

Usage

predictions(
model,
newdata = NULL,
variables = NULL,
vcov = TRUE,
conf_level = 0.95,
type = NULL,
by = FALSE,
byfun = NULL,
wts = FALSE,
transform = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
numderiv = "fdforward",
...

https://marginaleffects.com/vignettes/predictions.html
https://marginaleffects.com/

predictions 41

)

avg_predictions(
model,
newdata = NULL,
variables = NULL,
vcov = TRUE,
conf_level = 0.95,
type = NULL,
by = TRUE,
byfun = NULL,
wts = FALSE,
transform = NULL,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
numderiv = "fdforward",
...

)

Arguments

model Model object

newdata Grid of predictor values at which we evaluate predictions.

• Warning: Please avoid modifying your dataset between fitting the model
and calling a marginaleffects function. This can sometimes lead to un-
expected results.

• NULL (default): Unit-level predictions for each observed value in the dataset
(empirical distribution). The dataset is retrieved using insight::get_data(),
which tries to extract data from the environment. This may produce unex-
pected results if the original data frame has been altered since fitting the
model.

• string:
– "mean": Predictions at the Mean. Predictions when each predictor is

held at its mean or mode.
– "median": Predictions at the Median. Predictions when each predictor

is held at its median or mode.
– "marginalmeans": Predictions at Marginal Means. See Details section

below.
– "tukey": Predictions at Tukey’s 5 numbers.
– "grid": Predictions on a grid of representative numbers (Tukey’s 5 num-

bers and unique values of categorical predictors).
• datagrid() call to specify a custom grid of regressors. For example:

– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6
and other regressors fixed at their means or modes.

– See the Examples section and the datagrid() documentation.

42 predictions

• subset() call with a single argument to select a subset of the dataset used
to fit the model, ex: newdata = subset(treatment == 1)

• dplyr::filter() call with a single argument to select a subset of the
dataset used to fit the model, ex: newdata = filter(treatment == 1)

variables Counterfactual variables.

• Output:
– predictions(): The entire dataset is replicated once for each unique

combination of variables, and predictions are made.
– avg_predictions(): The entire dataset is replicated, predictions are

made, and they are marginalized by variables categories.
– Warning: This can be expensive in large datasets.
– Warning: Users who need "conditional" predictions should use the
newdata argument instead of variables.

• Input:
– NULL: computes one prediction per row of newdata
– Character vector: the dataset is replicated once of every combination

of unique values of the variables identified in variables.
– Named list: names identify the subset of variables of interest and their

values. For numeric variables, the variables argument supports func-
tions and string shortcuts:

* A function which returns a numeric value

* Numeric vector: Contrast between the 2nd element and the 1st ele-
ment of the x vector.

* "iqr": Contrast across the interquartile range of the regressor.

* "sd": Contrast across one standard deviation around the regressor
mean.

* "2sd": Contrast across two standard deviations around the regressor
mean.

* "minmax": Contrast between the maximum and the minimum values
of the regressor.

* "threenum": mean and 1 standard deviation on both sides

* "fivenum": Tukey’s five numbers

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"

predictions 43

– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package
documentation.

• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).
This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

byfun A function such as mean() or sum() used to aggregate estimates within the sub-
groups defined by the by argument. NULL uses the mean() function. Must accept
a numeric vector and return a single numeric value. This is sometimes used to
take the sum or mean of predicted probabilities across outcome or predictor lev-
els. See examples section.

wts logical, string or numeric: weights to use when computing average predictions,
contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

44 predictions

transform A function applied to unit-level adjusted predictions and confidence intervals
just before the function returns results. For bayesian models, this function is
applied to individual draws from the posterior distribution, before computing
summaries.

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, a string formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.
– "meanotherdev": difference between an estimate and the mean of all

other estimates, excluding the current one.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• Function:

– Accepts an argument x: object produced by a marginaleffects func-
tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

predictions 45

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

numderiv string or list of strings indicating the method to use to for the numeric differen-
tiation used in to compute delta method standard errors.

• "fdforward": finite difference method with forward differences
• "fdcenter": finite difference method with central differences (default)
• "richardson": Richardson extrapolation method
• Extra arguments can be specified by passing a list to the numDeriv argu-

ment, with the name of the method first and named arguments following,
ex: numderiv=list("fdcenter", eps = 1e-5). When an unknown argu-
ment is used, marginaleffects prints the list of valid arguments for each
method.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Value

A data.frame with one row per observation and several columns:

• rowid: row number of the newdata data frame

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• estimate: predicted outcome

• std.error: standard errors computed using the delta method.

• p.value: p value associated to the estimate column. The null is determined by the hypothesis
argument (0 by default), and p values are computed before applying the transform argument.
For models of class feglm, Gam, glm and negbin, p values are computed on the link scale by
default unless the type argument is specified explicitly.

• s.value: Shannon information transforms of p values. How many consecutive "heads" tosses
would provide the same amount of evidence (or "surprise") against the null hypothesis that
the coin is fair? The purpose of S is to calibrate the analyst’s intuition about the strength of

46 predictions

evidence encoded in p against a well-known physical phenomenon. See Greenland (2019) and
Cole et al. (2020).

• conf.low: lower bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

• conf.high: upper bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

See ?print.marginaleffects for printing options.

Functions

• avg_predictions(): Average predictions

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://marginaleffects.com/vignettes/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://marginaleffects.com/vignettes/bootstrap.html

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict

predictions 47

lme4 merMod re.form lme4::predict.merMod
allow.new.levels lme4::predict.merMod

glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB
allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument
or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

48 predictions

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Prediction types

The type argument determines the scale of the predictions used to compute quantities of interest
with functions from the marginaleffects package. Admissible values for type depend on the
model object. When users specify an incorrect value for type, marginaleffects will raise an
informative error with a list of valid type values for the specific model object. The first entry in the
list in that error message is the default type.

The invlink(link) is a special type defined by marginaleffects. It is available for some (but not
all) models and functions. With this link type, we first compute predictions on the link scale, then we
use the inverse link function to backtransform the predictions to the response scale. This is useful for
models with non-linear link functions as it can ensure that confidence intervals stay within desirable
bounds, ex: 0 to 1 for a logit model. Note that an average of estimates with type="invlink(link)"
will not always be equivalent to the average of estimates with type="response".

Some of the most common type values are:

response, link, E, Ep, average, class, conditional, count, cum.prob, cumhaz, cumprob, density,
detection, disp, ev, expected, expvalue, fitted, hazard, invlink(link), latent, latent_N, linear, lin-
ear.predictor, linpred, location, lp, mean, numeric, p, ppd, pr, precision, prediction, prob, proba-
bility, probs, quantile, risk, rmst, scale, survival, unconditional, utility, variance, xb, zero, zlink,
zprob

Order of operations

Behind the scenes, the arguments of marginaleffects functions are evaluated in this order:

1. newdata

2. variables

3. comparison and slopes

4. by

5. vcov

6. hypothesis

7. transform

Parallel computation

The slopes() and comparisons() functions can use parallelism to speed up computation. Oper-
ations are parallelized for the computation of standard errors, at the model coefficient level. There
is always considerable overhead when using parallel computation, mainly involved in passing the
whole dataset to the different processes. Thus, parallel computation is most likely to be useful when
the model includes many parameters and the dataset is relatively small.

Warning: In many cases, parallel processing will not be useful at all.

To activate parallel computation, users must load the future.apply package, call plan() function,
and set a global option. For example:

predictions 49

library(future.apply)
plan("multicore", workers = 4)
options(marginaleffects_parallel = TRUE)

slopes(model)

To disable parallelism in marginaleffects altogether, you can set a global option:

options(marginaleffects_parallel = FALSE)

References

• Greenland S. 2019. "Valid P-Values Behave Exactly as They Should: Some Misleading Crit-
icisms of P-Values and Their Resolution With S-Values." The American Statistician. 73(S1):
106–114.

• Cole, Stephen R, Jessie K Edwards, and Sander Greenland. 2020. "Surprise!" American
Journal of Epidemiology 190 (2): 191–93. https://doi.org/10.1093/aje/kwaa136

Examples

Adjusted Prediction for every row of the original dataset
mod <- lm(mpg ~ hp + factor(cyl), data = mtcars)
pred <- predictions(mod)
head(pred)

Adjusted Predictions at User-Specified Values of the Regressors
predictions(mod, newdata = datagrid(hp = c(100, 120), cyl = 4))

m <- lm(mpg ~ hp + drat + factor(cyl) + factor(am), data = mtcars)
predictions(m, newdata = datagrid(FUN_factor = unique, FUN_numeric = median))

Average Adjusted Predictions (AAP)
library(dplyr)
mod <- lm(mpg ~ hp * am * vs, mtcars)

avg_predictions(mod)

predictions(mod, by = "am")

Conditional Adjusted Predictions
plot_predictions(mod, condition = "hp")

Counterfactual predictions with the `variables` argument
the `mtcars` dataset has 32 rows

mod <- lm(mpg ~ hp + am, data = mtcars)
p <- predictions(mod)
head(p)
nrow(p)

50 predictions

average counterfactual predictions
avg_predictions(mod, variables = "am")

counterfactual predictions obtained by replicating the entire for different
values of the predictors
p <- predictions(mod, variables = list(hp = c(90, 110)))
nrow(p)

hypothesis test: is the prediction in the 1st row equal to the prediction in the 2nd row
mod <- lm(mpg ~ wt + drat, data = mtcars)

predictions(
mod,
newdata = datagrid(wt = 2:3),
hypothesis = "b1 = b2")

same hypothesis test using row indices
predictions(

mod,
newdata = datagrid(wt = 2:3),
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
predictions(

mod,
newdata = datagrid(wt = 2:3),
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

predictions(
mod,
newdata = datagrid(wt = 2:3),
hypothesis = lc)

`by` argument
mod <- lm(mpg ~ hp * am * vs, data = mtcars)
predictions(mod, by = c("am", "vs"))

library(nnet)
nom <- multinom(factor(gear) ~ mpg + am * vs, data = mtcars, trace = FALSE)

first 5 raw predictions
predictions(nom, type = "probs") |> head()

average predictions
avg_predictions(nom, type = "probs", by = "group")

print.marginaleffects 51

by <- data.frame(
group = c("3", "4", "5"),
by = c("3,4", "3,4", "5"))

predictions(nom, type = "probs", by = by)

sum of predicted probabilities for combined response levels
mod <- multinom(factor(cyl) ~ mpg + am, data = mtcars, trace = FALSE)
by <- data.frame(

by = c("4,6", "4,6", "8"),
group = as.character(c(4, 6, 8)))

predictions(mod, newdata = "mean", byfun = sum, by = by)

print.marginaleffects Print marginaleffects objects

Description

This function controls the text which is printed to the console when one of the core marginalefffects
functions is called and the object is returned: predictions(), comparisons(), slopes(), hypotheses(),
avg_predictions(), avg_comparisons(), avg_slopes().

All of those functions return standard data frames. Columns can be extracted by name, predictions(model)$estimate,
and all the usual data manipulation functions work out-of-the-box: colnames(), head(), subset(),
dplyr::filter(), dplyr::arrange(), etc.

Some of the data columns are not printed by default. You can disable pretty printing and print the
full results as a standard data frame using the style argument or by applying as.data.frame() on
the object. See examples below.

Usage

S3 method for class 'marginaleffects'
print(
x,
style = getOption("marginaleffects_print_style", default = "summary"),
digits = getOption("marginaleffects_print_digits", default = 3),
p_eps = getOption("marginaleffects_print_p_eps", default = 0.001),
topn = getOption("marginaleffects_print_topn", default = 5),
nrows = getOption("marginaleffects_print_nrows", default = 30),
ncols = getOption("marginaleffects_print_ncols", default = 30),
type = getOption("marginaleffects_print_type", default = TRUE),
column_names = getOption("marginaleffects_print_column_names", default = TRUE),
...

)

52 slopes

Arguments

x An object produced by one of the marginaleffects package functions.

style "summary", "data.frame", or "tinytable"

digits The number of digits to display.

p_eps p values smaller than this number are printed in "<0.001" style.

topn The number of rows to be printed from the beginning and end of tables with
more than nrows rows.

nrows The number of rows which will be printed before truncation.

ncols The maximum number of column names to display at the bottom of the printed
output.

type boolean: should the type be printed?

column_names boolean: should the column names be printed?

... Other arguments are currently ignored.

Examples

library(marginaleffects)
mod <- lm(mpg ~ hp + am + factor(gear), data = mtcars)
p <- predictions(mod, by = c("am", "gear"))
p

subset(p, am == 1)

print(p, style = "data.frame")

data.frame(p)

slopes Slopes (aka Partial derivatives, Marginal Effects, or Trends)

Description

Partial derivative of the regression equation with respect to a regressor of interest.

• slopes(): unit-level (conditional) estimates.

• avg_slopes(): average (marginal) estimates.

The newdata argument and the datagrid() function can be used to control where statistics are
evaluated in the predictor space: "at observed values", "at the mean", "at representative values", etc.

See the slopes vignette and package website for worked examples and case studies:

• https://marginaleffects.com/vignettes/slopes.html

• https://marginaleffects.com/

https://marginaleffects.com/vignettes/slopes.html
https://marginaleffects.com/

slopes 53

Usage

slopes(
model,
newdata = NULL,
variables = NULL,
type = NULL,
by = FALSE,
vcov = TRUE,
conf_level = 0.95,
slope = "dydx",
wts = FALSE,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
numderiv = "fdforward",
...

)

avg_slopes(
model,
newdata = NULL,
variables = NULL,
type = NULL,
by = TRUE,
vcov = TRUE,
conf_level = 0.95,
slope = "dydx",
wts = FALSE,
hypothesis = NULL,
equivalence = NULL,
p_adjust = NULL,
df = Inf,
eps = NULL,
numderiv = "fdforward",
...

)

Arguments

model Model object
newdata Grid of predictor values at which we evaluate the slopes.

• Warning: Please avoid modifying your dataset between fitting the model
and calling a marginaleffects function. This can sometimes lead to un-
expected results.

• NULL (default): Unit-level slopes for each observed value in the dataset (em-
pirical distribution). The dataset is retrieved using insight::get_data(),

54 slopes

which tries to extract data from the environment. This may produce unex-
pected results if the original data frame has been altered since fitting the
model.

• datagrid() call to specify a custom grid of regressors. For example:
– newdata = datagrid(cyl = c(4, 6)): cyl variable equal to 4 and 6

and other regressors fixed at their means or modes.
– See the Examples section and the datagrid() documentation.

• subset() call with a single argument to select a subset of the dataset used
to fit the model, ex: newdata = subset(treatment == 1)

• dplyr::filter() call with a single argument to select a subset of the
dataset used to fit the model, ex: newdata = filter(treatment == 1)

• string:
– "mean": Marginal Effects at the Mean. Slopes when each predictor is

held at its mean or mode.
– "median": Marginal Effects at the Median. Slopes when each predictor

is held at its median or mode.
– "marginalmeans": Marginal Effects at Marginal Means. See Details

section below.
– "tukey": Marginal Effects at Tukey’s 5 numbers.
– "grid": Marginal Effects on a grid of representative numbers (Tukey’s

5 numbers and unique values of categorical predictors).

variables Focal variables

• NULL: compute slopes or comparisons for all the variables in the model
object (can be slow).

• Character vector: subset of variables (usually faster).

type string indicates the type (scale) of the predictions used to compute contrasts or
slopes. This can differ based on the model type, but will typically be a string
such as: "response", "link", "probs", or "zero". When an unsupported string
is entered, the model-specific list of acceptable values is returned in an error
message. When type is NULL, the first entry in the error message is used by
default.

by Aggregate unit-level estimates (aka, marginalize, average over). Valid inputs:

• FALSE: return the original unit-level estimates.
• TRUE: aggregate estimates for each term.
• Character vector of column names in newdata or in the data frame produced

by calling the function without the by argument.
• Data frame with a by column of group labels, and merging columns shared

by newdata or the data frame produced by calling the same function with-
out the by argument.

• See examples below.
• For more complex aggregations, you can use the FUN argument of the hypotheses()

function. See that function’s documentation and the Hypothesis Test vi-
gnettes on the marginaleffects website.

vcov Type of uncertainty estimates to report (e.g., for robust standard errors). Accept-
able values:

slopes 55

• FALSE: Do not compute standard errors. This can speed up computation
considerably.

• TRUE: Unit-level standard errors using the default vcov(model) variance-
covariance matrix.

• String which indicates the kind of uncertainty estimates to return.
– Heteroskedasticity-consistent: "HC", "HC0", "HC1", "HC2", "HC3", "HC4",
"HC4m", "HC5". See ?sandwich::vcovHC

– Heteroskedasticity and autocorrelation consistent: "HAC"
– Mixed-Models degrees of freedom: "satterthwaite", "kenward-roger"
– Other: "NeweyWest", "KernHAC", "OPG". See the sandwich package

documentation.
• One-sided formula which indicates the name of cluster variables (e.g., ~unit_id).

This formula is passed to the cluster argument of the sandwich::vcovCL
function.

• Square covariance matrix
• Function which returns a covariance matrix (e.g., stats::vcov(model))

conf_level numeric value between 0 and 1. Confidence level to use to build a confidence
interval.

slope string indicates the type of slope or (semi-)elasticity to compute:
• "dydx": dY/dX
• "eyex": dY/dX * Y / X
• "eydx": dY/dX * Y
• "dyex": dY/dX / X
• Y is the predicted value of the outcome; X is the observed value of the

predictor.
wts logical, string or numeric: weights to use when computing average predictions,

contrasts or slopes. These weights only affect the averaging in avg_*() or with
the by argument, and not unit-level estimates. See ?weighted.mean

• string: column name of the weights variable in newdata. When supply-
ing a column name to wts, it is recommended to supply the original data
(including the weights variable) explicitly to newdata.

• numeric: vector of length equal to the number of rows in the original data
or in newdata (if supplied).

• FALSE: Equal weights.
• TRUE: Extract weights from the fitted object with insight::find_weights()

and use them when taking weighted averages of estimates. Warning: newdata=datagrid()
returns a single average weight, which is equivalent to using wts=FALSE

hypothesis specify a hypothesis test or custom contrast using a numeric value, vector, or
matrix, a string, a string formula, or a function.

• Numeric:
– Single value: the null hypothesis used in the computation of Z and p

(before applying transform).
– Vector: Weights to compute a linear combination of (custom contrast

between) estimates. Length equal to the number of rows generated by
the same function call, but without the hypothesis argument.

56 slopes

– Matrix: Each column is a vector of weights, as describe above, used to
compute a distinct linear combination of (contrast between) estimates.
The column names of the matrix are used as labels in the output.

• String formula to specify linear or non-linear hypothesis tests. If the term
column uniquely identifies rows, terms can be used in the formula. Other-
wise, use b1, b2, etc. to identify the position of each parameter. The b*
wildcard can be used to test hypotheses on all estimates. If a named vector
is used, the names are used as labels in the output. Examples:

– hp = drat

– hp + drat = 12

– b1 + b2 + b3 = 0

– b* / b1 = 1

• String:
– "pairwise": pairwise differences between estimates in each row.
– "reference": differences between the estimates in each row and the es-

timate in the first row.
– "sequential": difference between an estimate and the estimate in the

next row.
– "meandev": difference between an estimate and the mean of all esti-

mates.
– "meanotherdev": difference between an estimate and the mean of all

other estimates, excluding the current one.
– "revpairwise", "revreference", "revsequential": inverse of the corre-

sponding hypotheses, as described above.
• Function:

– Accepts an argument x: object produced by a marginaleffects func-
tion or a data frame with column rowid and estimate

– Returns a data frame with columns term and estimate (mandatory)
and rowid (optional).

– The function can also accept optional input arguments: newdata, by,
draws.

– This function approach will not work for Bayesian models or with boot-
strapping. In those cases, it is easy to use posterior_draws() to ex-
tract and manipulate the draws directly.

• See the Examples section below and the vignette: https://marginaleffects.com/vignettes/hypothesis.html

equivalence Numeric vector of length 2: bounds used for the two-one-sided test (TOST) of
equivalence, and for the non-inferiority and non-superiority tests. See Details
section below.

p_adjust Adjust p-values for multiple comparisons: "holm", "hochberg", "hommel", "bon-
ferroni", "BH", "BY", or "fdr". See stats::p.adjust

df Degrees of freedom used to compute p values and confidence intervals. A single
numeric value between 1 and Inf. When df is Inf, the normal distribution is
used. When df is finite, the t distribution is used. See insight::get_df for a
convenient function to extract degrees of freedom. Ex: slopes(model, df =
insight::get_df(model))

slopes 57

eps NULL or numeric value which determines the step size to use when calculating
numerical derivatives: (f(x+eps)-f(x))/eps. When eps is NULL, the step size is
0.0001 multiplied by the difference between the maximum and minimum values
of the variable with respect to which we are taking the derivative. Changing eps
may be necessary to avoid numerical problems in certain models.

numderiv string or list of strings indicating the method to use to for the numeric differen-
tiation used in to compute delta method standard errors.

• "fdforward": finite difference method with forward differences
• "fdcenter": finite difference method with central differences (default)
• "richardson": Richardson extrapolation method
• Extra arguments can be specified by passing a list to the numDeriv argu-

ment, with the name of the method first and named arguments following,
ex: numderiv=list("fdcenter", eps = 1e-5). When an unknown argu-
ment is used, marginaleffects prints the list of valid arguments for each
method.

... Additional arguments are passed to the predict() method supplied by the
modeling package.These arguments are particularly useful for mixed-effects or
bayesian models (see the online vignettes on the marginaleffects website).
Available arguments can vary from model to model, depending on the range
of supported arguments by each modeling package. See the "Model-Specific
Arguments" section of the ?slopes documentation for a non-exhaustive list of
available arguments.

Details

A "slope" or "marginal effect" is the partial derivative of the regression equation with respect to
a variable in the model. This function uses automatic differentiation to compute slopes for a vast
array of models, including non-linear models with transformations (e.g., polynomials). Uncertainty
estimates are computed using the delta method.

Numerical derivatives for the slopes function are calculated using a simple epsilon difference ap-
proach: ∂Y/∂X = (f(X + ε/2) − f(X − ε/2))/ε, where f is the predict() method associated
with the model class, and ε is determined by the eps argument.

Value

A data.frame with one row per observation (per term/group) and several columns:

• rowid: row number of the newdata data frame

• type: prediction type, as defined by the type argument

• group: (optional) value of the grouped outcome (e.g., categorical outcome models)

• term: the variable whose marginal effect is computed

• dydx: slope of the outcome with respect to the term, for a given combination of predictor
values

• std.error: standard errors computed by via the delta method.

58 slopes

• p.value: p value associated to the estimate column. The null is determined by the hypothesis
argument (0 by default), and p values are computed before applying the transform argument.
For models of class feglm, Gam, glm and negbin, p values are computed on the link scale by
default unless the type argument is specified explicitly.

• s.value: Shannon information transforms of p values. How many consecutive "heads" tosses
would provide the same amount of evidence (or "surprise") against the null hypothesis that
the coin is fair? The purpose of S is to calibrate the analyst’s intuition about the strength of
evidence encoded in p against a well-known physical phenomenon. See Greenland (2019) and
Cole et al. (2020).

• conf.low: lower bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

• conf.high: upper bound of the confidence interval (or equal-tailed interval for bayesian mod-
els)

See ?print.marginaleffects for printing options.

Functions

• avg_slopes(): Average slopes

Standard errors using the delta method

Standard errors for all quantities estimated by marginaleffects can be obtained via the delta
method. This requires differentiating a function with respect to the coefficients in the model using
a finite difference approach. In some models, the delta method standard errors can be sensitive to
various aspects of the numeric differentiation strategy, including the step size. By default, the step
size is set to 1e-8, or to 1e-4 times the smallest absolute model coefficient, whichever is largest.

marginaleffects can delegate numeric differentiation to the numDeriv package, which allows
more flexibility. To do this, users can pass arguments to the numDeriv::jacobian function through
a global option. For example:

• options(marginaleffects_numDeriv = list(method = "simple", method.args = list(eps
= 1e-6)))

• options(marginaleffects_numDeriv = list(method = "Richardson", method.args = list(eps
= 1e-5)))

• options(marginaleffects_numDeriv = NULL)

See the "Standard Errors and Confidence Intervals" vignette on the marginaleffects website for
more details on the computation of standard errors:

https://marginaleffects.com/vignettes/uncertainty.html

Note that the inferences() function can be used to compute uncertainty estimates using a boot-
strap or simulation-based inference. See the vignette:

https://marginaleffects.com/vignettes/bootstrap.html

slopes 59

Model-Specific Arguments

Some model types allow model-specific arguments to modify the nature of marginal effects, predic-
tions, marginal means, and contrasts. Please report other package-specific predict() arguments
on Github so we can add them to the table below.

https://github.com/vincentarelbundock/marginaleffects/issues

Package Class Argument Documentation
brms brmsfit ndraws brms::posterior_predict

re_formula brms::posterior_predict
lme4 merMod re.form lme4::predict.merMod

allow.new.levels lme4::predict.merMod
glmmTMB glmmTMB re.form glmmTMB::predict.glmmTMB

allow.new.levels glmmTMB::predict.glmmTMB
zitype glmmTMB::predict.glmmTMB

mgcv bam exclude mgcv::predict.bam
robustlmm rlmerMod re.form robustlmm::predict.rlmerMod

allow.new.levels robustlmm::predict.rlmerMod
MCMCglmm MCMCglmm ndraws

Bayesian posterior summaries

By default, credible intervals in bayesian models are built as equal-tailed intervals. This can be
changed to a highest density interval by setting a global option:

options("marginaleffects_posterior_interval" = "eti")

options("marginaleffects_posterior_interval" = "hdi")

By default, the center of the posterior distribution in bayesian models is identified by the median.
Users can use a different summary function by setting a global option:

options("marginaleffects_posterior_center" = "mean")

options("marginaleffects_posterior_center" = "median")

When estimates are averaged using the by argument, the tidy() function, or the summary() func-
tion, the posterior distribution is marginalized twice over. First, we take the average across units
but within each iteration of the MCMC chain, according to what the user requested in by argument
or tidy()/summary() functions. Then, we identify the center of the resulting posterior using the
function supplied to the "marginaleffects_posterior_center" option (the median by default).

Equivalence, Inferiority, Superiority

θ is an estimate, σθ its estimated standard error, and [a, b] are the bounds of the interval supplied to
the equivalence argument.

Non-inferiority:

• H0: θ ≤ a

• H1: θ > a

• t = (θ − a)/σθ

60 slopes

• p: Upper-tail probability

Non-superiority:

• H0: θ ≥ b

• H1: θ < b

• t = (θ − b)/σθ

• p: Lower-tail probability

Equivalence: Two One-Sided Tests (TOST)

• p: Maximum of the non-inferiority and non-superiority p values.

Thanks to Russell V. Lenth for the excellent emmeans package and documentation which inspired
this feature.

Prediction types

The type argument determines the scale of the predictions used to compute quantities of interest
with functions from the marginaleffects package. Admissible values for type depend on the
model object. When users specify an incorrect value for type, marginaleffects will raise an
informative error with a list of valid type values for the specific model object. The first entry in the
list in that error message is the default type.

The invlink(link) is a special type defined by marginaleffects. It is available for some (but not
all) models and functions. With this link type, we first compute predictions on the link scale, then we
use the inverse link function to backtransform the predictions to the response scale. This is useful for
models with non-linear link functions as it can ensure that confidence intervals stay within desirable
bounds, ex: 0 to 1 for a logit model. Note that an average of estimates with type="invlink(link)"
will not always be equivalent to the average of estimates with type="response".

Some of the most common type values are:

response, link, E, Ep, average, class, conditional, count, cum.prob, cumhaz, cumprob, density,
detection, disp, ev, expected, expvalue, fitted, hazard, invlink(link), latent, latent_N, linear, lin-
ear.predictor, linpred, location, lp, mean, numeric, p, ppd, pr, precision, prediction, prob, proba-
bility, probs, quantile, risk, rmst, scale, survival, unconditional, utility, variance, xb, zero, zlink,
zprob

Parallel computation

The slopes() and comparisons() functions can use parallelism to speed up computation. Oper-
ations are parallelized for the computation of standard errors, at the model coefficient level. There
is always considerable overhead when using parallel computation, mainly involved in passing the
whole dataset to the different processes. Thus, parallel computation is most likely to be useful when
the model includes many parameters and the dataset is relatively small.

Warning: In many cases, parallel processing will not be useful at all.

To activate parallel computation, users must load the future.apply package, call plan() function,
and set a global option. For example:

slopes 61

library(future.apply)
plan("multicore", workers = 4)
options(marginaleffects_parallel = TRUE)

slopes(model)

To disable parallelism in marginaleffects altogether, you can set a global option:

options(marginaleffects_parallel = FALSE)

Order of operations

Behind the scenes, the arguments of marginaleffects functions are evaluated in this order:

1. newdata

2. variables

3. comparison and slopes

4. by

5. vcov

6. hypothesis

7. transform

References

• Greenland S. 2019. "Valid P-Values Behave Exactly as They Should: Some Misleading Crit-
icisms of P-Values and Their Resolution With S-Values." The American Statistician. 73(S1):
106–114.

• Cole, Stephen R, Jessie K Edwards, and Sander Greenland. 2020. "Surprise!" American
Journal of Epidemiology 190 (2): 191–93. https://doi.org/10.1093/aje/kwaa136

Examples

Unit-level (conditional) Marginal Effects
mod <- glm(am ~ hp * wt, data = mtcars, family = binomial)
mfx <- slopes(mod)
head(mfx)

Average Marginal Effect (AME)
avg_slopes(mod, by = TRUE)

Marginal Effect at the Mean (MEM)
slopes(mod, newdata = datagrid())

Marginal Effect at User-Specified Values
Variables not explicitly included in `datagrid()` are held at their means
slopes(mod, newdata = datagrid(hp = c(100, 110)))

62 slopes

Group-Average Marginal Effects (G-AME)
Calculate marginal effects for each observation, and then take the average
marginal effect within each subset of observations with different observed
values for the `cyl` variable:
mod2 <- lm(mpg ~ hp * cyl, data = mtcars)
avg_slopes(mod2, variables = "hp", by = "cyl")

Marginal Effects at User-Specified Values (counterfactual)
Variables not explicitly included in `datagrid()` are held at their
original values, and the whole dataset is duplicated once for each
combination of the values in `datagrid()`
mfx <- slopes(mod,

newdata = datagrid(hp = c(100, 110),
grid_type = "counterfactual"))

head(mfx)

Heteroskedasticity robust standard errors
mfx <- slopes(mod, vcov = sandwich::vcovHC(mod))
head(mfx)

hypothesis test: is the `hp` marginal effect at the mean equal to the `drat` marginal effect
mod <- lm(mpg ~ wt + drat, data = mtcars)

slopes(
mod,
newdata = "mean",
hypothesis = "wt = drat")

same hypothesis test using row indices
slopes(

mod,
newdata = "mean",
hypothesis = "b1 - b2 = 0")

same hypothesis test using numeric vector of weights
slopes(

mod,
newdata = "mean",
hypothesis = c(1, -1))

two custom contrasts using a matrix of weights
lc <- matrix(c(

1, -1,
2, 3),
ncol = 2)

colnames(lc) <- c("Contrast A", "Contrast B")
slopes(

mod,
newdata = "mean",
hypothesis = lc)

specify_hypothesis 63

specify_hypothesis (EXPERIMENTAL) Complex aggregation and test functions for the
hypothesis argument

Description

Warning: This function is experimental. It may be renamed, the user interface may change, or the
functionality may migrate to arguments in other marginaleffects functions.

This function creates aggregation and test functions for use with the hypothesis argument in
marginaleffects functions like predictions(), slopes(), and comparisons(). The benefit
of this function is that it handles a lot of the "boilerplate" code such as label creation and transfor-
mations by subgroups.

Usage

specify_hypothesis(
hypothesis = "reference",
label = NULL,
label_columns = NULL,
by = c("term", "group", "contrast")

)

Arguments

hypothesis String or Function. Compute a test statistic.

• String: "reference" or "sequential"
• Function: Accepts a single argument named estimate and returns a nu-

meric vector.

label Function. Accepts a vector of row labels and combines them to create hypothesis
labels.

label_columns Character vector. Column names to use for hypothesis labels. Default is c("group",
"term", "rowid", attr(x, "variables_datagrid"), attr(x, "by")).

by Character vector. Variable names which indicate subgroups in which the hypothesis
function should be applied.

Value

specify_hypothesis() is a "function factory", which means that executing it will return a function
suitable for use in the hypothesis argument of a marginaleffects function.

Index

avg_comparisons (comparisons), 3
avg_predictions (predictions), 40
avg_slopes (slopes), 52

brms::posterior_predict, 11, 31, 34, 39,
46, 59

car::deltaMethod, 19
car::linearHypothesis, 19
comparisons, 3

datagrid, 5, 16
datagrid(), 5, 41, 54
dplyr::filter(), 5, 42, 54

glmmTMB::predict.glmmTMB, 11, 31, 35, 39,
47, 59

hypotheses, 19, 19

inferences, 25
insight::get_data(), 5, 41, 53
insight::get_df, 9, 45, 56

lme4::predict.merMod, 11, 31, 34, 39, 47, 59

mgcv::predict.bam, 11, 31, 35, 39, 47, 59

plot_comparisons, 28
plot_predictions, 32
plot_slopes, 35
posterior_draws, 39
predictions, 40
print.marginaleffects, 51

robustlmm::predict.rlmerMod, 11, 31, 35,
39, 47, 59

slopes, 52
specify_hypothesis, 63
stats::p.adjust, 9, 45, 56
subset(), 5, 42, 54

weights(), 26

64

	comparisons
	datagrid
	hypotheses
	inferences
	plot_comparisons
	plot_predictions
	plot_slopes
	posterior_draws
	predictions
	print.marginaleffects
	slopes
	specify_hypothesis
	Index

