niarules: Numerical Association Rule Mining using Population-Based
Nature-Inspired Algorithms
Framework is devoted to mining numerical association rules through the
  utilization of nature-inspired algorithms for optimization. Drawing inspiration
  from the 'NiaARM' 'Python' and the 'NiaARM' 'Julia' packages, this repository
  introduces the capability to perform numerical association rule mining in
  the R programming language.
  Fister Jr., Iglesias, Galvez, Del Ser, Osaba and Fister (2018) <doi:10.1007/978-3-030-03493-1_9>.
| Version: | 
0.3.1 | 
| Depends: | 
R (≥ 4.0.0) | 
| Imports: | 
stats, utils, Rcpp, dplyr, rlang, rgl | 
| LinkingTo: | 
Rcpp | 
| Suggests: | 
testthat, withr | 
| Published: | 
2025-09-15 | 
| DOI: | 
10.32614/CRAN.package.niarules | 
| Author: | 
Iztok Jr. Fister  
    [aut, cre, cph],
  Gerlinde Emsenhuber
      [aut],
  Jan Hendrik Plümer
      [aut] | 
| Maintainer: | 
Iztok Jr. Fister  <iztok at iztok.space> | 
| BugReports: | 
https://github.com/firefly-cpp/niarules/issues | 
| License: | 
MIT + file LICENSE | 
| URL: | 
https://github.com/firefly-cpp/niarules | 
| NeedsCompilation: | 
yes | 
| Classification/ACM: | 
G.4, H.2.8 | 
| Materials: | 
README, NEWS  | 
| CRAN checks: | 
niarules results | 
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=niarules
to link to this page.