A novel ensemble method employing Support Vector Machines (SVMs) as base learners. This powerful ensemble model is designed for both classification (Ara A., et. al, 2021) <doi:10.6339/21-JDS1014>, and regression (Ara A., et. al, 2021) <doi:10.1016/j.eswa.2022.117107> problems, offering versatility and robust performance across different datasets and compared with other consolidated methods as Random Forests (Maia M, et. al, 2021) <doi:10.6339/21-JDS1025>.
| Version: | 0.1.1 | 
| Depends: | R (≥ 2.10) | 
| Imports: | kernlab, methods, stats | 
| Published: | 2025-07-23 | 
| DOI: | 10.32614/CRAN.package.randomMachines | 
| Author: | Mateus Maia | 
| Maintainer: | Mateus Maia <mateus.maiamarques at glasgow.ac.uk> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| Materials: | README | 
| CRAN checks: | randomMachines results | 
| Reference manual: | randomMachines.html , randomMachines.pdf | 
| Package source: | randomMachines_0.1.1.tar.gz | 
| Windows binaries: | r-devel: randomMachines_0.1.1.zip, r-release: randomMachines_0.1.1.zip, r-oldrel: randomMachines_0.1.1.zip | 
| macOS binaries: | r-release (arm64): randomMachines_0.1.1.tgz, r-oldrel (arm64): randomMachines_0.1.1.tgz, r-release (x86_64): randomMachines_0.1.1.tgz, r-oldrel (x86_64): randomMachines_0.1.1.tgz | 
| Old sources: | randomMachines archive | 
Please use the canonical form https://CRAN.R-project.org/package=randomMachines to link to this page.