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Abstract

In the context of macroeconomic/financial time series, the FARS package provides a
comprehensive framework in R for the construction of conditional densities of the variable
of interest based on the factor-augmented quantile regressions (FA-QRs) methodology,
with the factors extracted from multi-level dynamic factor models (ML-DFMs) with po-
tential overlapping group-specific factors. Furthermore, the package also allows the con-
struction of measures of risk as well as modeling and designing economic scenarios based
on the conditional densities. In particular, the package enables users to: (i) extract global
and group-specific factors using a flexible multi-level factor structure; (ii) compute asymp-
totically valid confidence regions for the estimated factors, accounting for uncertainty in
the factor loadings; (iii) obtain estimates of the parameters of the FA-QRs together with
their standard deviations; (iv) recover full predictive conditional densities from estimated
quantiles; (v) obtain risk measures based on extreme quantiles of the conditional densities;
and (vi) estimate the conditional density and the corresponding extreme quantiles when
the factors are stressed.

Keywords: Multi-level dynamic factor model, Quantile regression, Scenario analysis, R.

1. Introduction

In the context of macroeconomic/financial time series, there is a growing interest in the devel-
opment of new econometric tools to obtain predictions of the probability densities of specific
key variables; see, for example, Granger and Pesaran (2000a) and Granger and Pesaran
(2000b), who argue that point forecasts are not sufficient from the perspective of a properly
informed decision-maker. In addition to being of interest in themselves, these densities can
also serve to obtain measures of macroeconomic vulnerability, which are crucial for the design
of resilience policies; see, for example, Delle Monache, De Polis, and Petrella (2024). Fur-
thermore, econometricians, policy makers, and financial analysts are also interested in the
construction of realistic scenarios for the distribution of key variables that can help to further
understand the resilience of economic systems by providing early warning signals of what to
expect should such conditions materialize in adverse outlooks; see, for example, González-
Rivera, Rodríguez-Caballero, and Ruiz (2024) and Adrian, Giannone, Lucciani, and West
(2024).

To start with, estimation of the conditional density of interest is often based on assuming that
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underlying economic and/or financial latent factors drive it. As proposed by Bai and Ng (2008)
and Ando and Tsay (2011), and popularized by Adrian, Boyarchenko, and Giannone (2019),
the quantiles of the distribution of the target variable can be estimated by fitting factor-
augmented quantile regressions (FA-QRs) with underlying latent factors, which summarize
economic and/or financial activity, as regressors. The FA-QR model allows for different
impacts of underlying factors on different quantiles of the distribution of the variable of
interest, and consequently, for potential asymmetries in the downside and upside risks. After
estimating the quantiles, and following Azzalini and Capitanio (2003), the corresponding h-
step-ahead conditional density is obtained by fitting a skew-t distribution to them. The skew-t
distribution has been shown to be flexible enough to provide an appropriate approximation
to the conditional density of a large number of economic variables; see Mitchell, Poon, and
Zhu (2024) for alternative estimators of densities, which are shown to outperform the popular
skew-t distribution in the unlikely case of multimodal distributions. The estimated conditional
density delivers any quantile of interest, and, in particular, extreme quantiles, which are often
used as measures of vulnerability as, for example, the Growth at Risk (GaR) proposed by
Adrian et al. (2019), or the Inflation at Risk (IaR) as in Lopez-Salido and Loria (2024).

The factors needed as regressors for FA-QRs can be extracted from a dynamic factor model
(DFM), with the preferred estimation method being Principal Components (PC); see, for
example, Bai (2003) and Bai and Ng (2013) for technical details.1 Over the last few decades,
when dealing with large systems of economic variables, it is not unusual to empirically observe
that some of the latent factors, which summarize the common movements in the system, only
load on particular groups of variables. This block structure may represent economic, geo-
graphical, cultural, or other characteristics. In this context, PC may face difficulties. Alter-
natively, factors can be extracted from Multi-level Dynamic Factor models (ML-DFMs) with
the matrix of factor loadings subjected to the adequate blocks of zero restrictions. The factor
structure of the ML-DFM allows for pervasive (or global) factors that are common across all
variables in the system, as well as group-specific factors associated with one or more blocks of
variables. The ML-DFM can incorporate non-overlapping or overlapping blocks of variables.
The factors of ML-DFMs can be extracted using the sequential Least Squares (LS) estimator
proposed by Breitung and Eickmeier (2016) for non-overlapping factors and generalized by
Rodríguez-Caballero and Caporin (2019) to overlapping factors. It is also important to note
that, when the extracted factors are used as regressors of predictive regressions, obtaining
measures of their uncertainty becomes relevant; see, for example, Amburgey and McCracken
(2022) and Lewis, Mertens, Stock, and Trivedi (2022). The asymptotic distribution of the
factors extracted by sequential LS is established by Choi, Kim, Kim, and Kwark (2018) for
DFMs without overlapping factors and by Lu, Jin, and Su (2025) for overlapping factors.

Finally, in order to generate stressed scenarios (or stressed factors) for the conditional densi-
ties, the methodology proposed by González-Rivera, Maldonado, and Ruiz (2019) can be used.
Under unexpected and rare circumstances, the factors driving the distribution of the vari-
able of interest are under stress, and thus deviate substantially from their averages. Stressed
factors are probabilistically derived based on their multidimensional distribution, focusing on
the observations located on its extreme autocontours.

This paper presents the FARS package, which provides a comprehensive framework in R

1Note that on top of being used as predictors of FA-QRs, there are many other applications in which the
factors can be of interest in themselves as, for example, when using them to construct economic/financial
indexes or as predictors of diffusion indexes; see the survey on DFMs by Stock and Watson (2011).
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for modeling and forecasting conditional densities based on ML-DFMs and FA-QRs.2 The
package enables users to:

1. Use sequential-LS to extract pervasive, semipervasive, and block-specific factors based
on a flexible specification of the ML-DFM. This approach allows for overlapping blocks,
enabling the extraction of factors within a hierarchical structure with more than two lev-
els, beyond the usual global-local configuration. To the best of our knowledge, there are
no other published R packages that provide this functionality. The only closely related
package available in R is GCCfactor by Lin and Shin (2023), which allows factor estima-
tion in ML-DFMs with non-overlapping structures. The estimation method is based on
the Generalized Canonical Correlation (GCC) estimator, which is conceptually related
to sequential-LS; see Lin and Shin (2022).3 Alternatively, several open-source pack-
ages provide functionalities for multilevel modeling using different methods, including
lavaan (Rosseel 2012) and OpenMx (Boker, Neale, Maes, Wilde, Spiegel, Brick, Spies,
Estabrook, Kenny, Bates, Mehta, and Fox 2011) in R, as well as the mfmodel pack-
age in Python (Parshakova, Hastie, and Boyd 2025). Commercial implementations are
also available, such as GLLAMM in Stata and in MLwiN; see Rabe-Hesketh, Skrondal,
and Pickles (2004) and Rasbash, Browne, Goldstein, Yang, Plewis, Healy, Woodhouse,
Draper, Langford, and Lewis (2000), respectively.

2. Compute asymptotically valid confidence regions for the factors extracted using se-
quential LS, accounting for uncertainty in the factor loadings, and for potential cross-
correlations of the idiosyncratic components. As far as we are concerned, the only
software that allows inference on factors is GCCfactor, where the confidence regions are
based on bootstrap instead of being asymptotic.

3. Estimate FA-QR models, recover full predictive conditional densities from these esti-
mated quantiles and obtain risk measures such as GaR and IaR. A similar implemen-
tation is presented by Lajaunie, Flament, Hurlin, and Kazemi (2025), which provides
an unpublished software in R to estimate factor-augmented quantile regressions and
the corresponding densities.4 Furthermore, the International Monetary Fund offers a
Microsoft Excel toolkit that integrates macros and a user interface to perform GaR esti-
mation, based on Adrian et al. (2019); see Prasad, Elekdag, Jeasakul, Lafarguette, Alter,
Feng, and Wang (2019) for further details. This toolkit relies on a Python backend that
conducts estimation, optimization, distribution fitting, simulations, and visualization.

2Version 0.7.1 of the FARS package is available in CRAN: https://CRAN.R-project.org/package=FARS.
3Other implementations of DFMs (not multilevel) are available in the R, although they are not pub-

lished. The sparseDFM package implements popular estimation methods for DFMs, including the recent Sparse
DFM approach by Mosley, Chan, and Gibberd (2024); see Mosley, Chan, and Gibberd (2023). The MARSS,

KFAS packages provide a flexible framework for modeling DFMs within state-space structures (Holmes, Ward,
Scheuerell, and Wills (2023) and Helske (2017)). Furthermore, the dfms package offers a broad suite of DFM
estimation techniques under the assumption of idiosyncratic components independently and identically dis-
tributed (i.i.d.) (Krantz, Bagdziunas, Tikka, and Holmes 2025). Also, commercial software can be used to
extract factors from DFMs in Eviews, Matlab, Stata and Julia; see, for example, Solberger and Spanger (2020)
for the estimation of the DFM in the context of state-space models.

4There are alternative R packages for estimating quantile regressions (including linear, nonlinear, censored,
locally polynomial, and additive models) such as the quantreg package by Koenker (2025). However, these
implementations do not include factor-augmented specifications. Conversely, packages like pls by Mevik and
Wehrens (2007) allow for factor-augmented regressions but do not estimate quantiles.

https://CRAN.R-project.org/package=FARS
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4. Obtain scenarios for the conditional density and associated risk measures when the
factors are stressed. None of the alternative software mentioned above implements such
functionality.

The functionalities of the FARS package are illustrated through two different examples. In the
first example, the underlying factors of headline inflation across a large number of European
countries are extracted. The factors are subsequently employed to estimate the conditional
density of aggregate inflation in a selected country to assess the associated risk of high in-
flation, both when the economy is under business-as-usual conditions and when it is under
stress. A second example considers building scenarios for the density of economic growth in
the United States (US), as in González-Rivera et al. (2024).

The rest of this paper is organized as follows. The methodology is briefly described in Sec-
tion 2. Section 3 describes the functionality of the FARS package. Section 4 is devoted to
illustrating two empirical applications regarding European inflation and US GDP growth.
Finally, Section 5 concludes.

2. Methodology

In this section, we provide a brief description of the methodology for extracting underlying
factors and obtaining conditional density forecasts of the target variable under standard eco-
nomic dynamics and stressed scenarios of the underlying factors. First, we discuss the factor
structures involved in the DFMs and ML-DFMs (with and without overlapping blocks), and
describe the asymptotic distribution of the PC estimated factors, assuming that idiosyncratic
components are either cross-sectionally uncorrelated or weakly correlated. Second, we de-
scribe how to obtain forecasts of the density of the target variable under both stressed and
non-stressed scenarios using FA-QRs.

2.1. Dynamic Factor Model (DFM)

The DFM has been extensively studied in the literature to reduce the dimensionality of large
sets of variables by assuming that they can be represented by a relatively small number of
common underlying factors; see, for example, Stock and Watson (2002a,b), Bai (2003), and
Bai and Ng (2013). Consider Xt = (x1t, ..., xNt)

′, the N × 1 vector of weakly stationary
variables observed at time t = 1, ..., T . The DFM is given by

Xt = PFt + ϵt, (1)

where P = (p′
1, ..., p′

N )′ is the N × r matrix of factor loadings, Ft = (F1t, . . . , Frt)
′ is an

r × 1 vector of weakly stationary latent factors, and ϵt = (ϵ1t, ..., ϵNt)
′ is the N × 1 vector of

idiosyncratic components, which are assumed to be weakly stationary and cross-sectionally
weakly correlated, and uncorrelated with the common factors Ft. Finally, the number of
factors, r, is known.

In model (1), the loadings and factors cannot be separately identified. They can only be
estimated consistently up to a rotation of the factor space. Consequently, the standard
identification restrictions often assumed in the literature are that 1

T F ′F = Ir, and that 1
N P ′P

is a diagonal matrix with distinct elements on the main diagonal, ordered from largest to
smallest. Under these restrictions, estimated factors are identified up to a sign transformation;
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see Bai and Ng (2013) for more details about the identification of DFMs in the context of PC
estimation.

In practice, factors are often estimated using PC. Let X = (X1, . . . , XT )′ denote the T × N

matrix of observed data. The PC-estimated factors, F̂t, are obtained as
√

T times the eigen-
vectors associated with the r highest eigenvalues of the matrix XX ′, ordered in decreasing
magnitude. The corresponding loading matrix is then estimated by P̂ ′ = 1

T F̂ ′X.

2.2. Multi-level Dynamic Factor Model

In many economic/financial applications, the variables in Xt are naturally grouped into blocks,
such as countries, geographical regions, or economic sectors. In some cases, not all variables
in Xt load onto all factors in the DFM, which implies the presence of zeros in the matrix of
loadings, P . The standard PC approach is suboptimal in this context, as it neglects the block
structure. Consequently, when the block structure is known, a more appropriate approach
is to extract the factors from a ML-DFM, where the relevant zero restrictions are imposed
directly on P . In what follows, we present two alternative specifications of the ML-DFM,
depending on whether the blocks of variables overlap.

ML-DFM without overlapping blocks

Breitung and Eickmeier (2016) propose the following ML-DFM with non-overlapping blocks




X1,t
...

XK,t


 =




µ1 λ1 0 . . . 0
µ2 0 λ2 . . . 0
... 0

. . . 0
µK 0 0 . . . λK







Gt

F1,t

F2,t
...

FK,t




+




ϵ1,·t
...

ϵK,·t


 , (2)

where, for k = 1, ..., K, Xk,t is the Nk × 1 vector of variables within block k, such that
the cross-sectional dimension of Xt = (X1,t, ..., XK,t)

′ is N =
∑K

k=1 Nk. Furthermore, Gt =
(G1,t, . . . , GrG,t)

′ is the rG × 1 vector of pervasive factors that load on all variables in the
system, while Fk,t = (F1,t, . . . , Frk,t)

′ is the rk × 1 vector of block-specific factors that load
only within the block Xk,t. The matrix of loadings and the idiosyncratic noise are defined
conformably; see Breitung and Eickmeier (2016) and Choi et al. (2018) for further technical
details and identification conditions.

ML-DFM with overlapping blocks

For clarity of exposition of the ML-DFM with overlapping blocks, consider the case with
K = 3; see Rodríguez-Caballero and Caporin (2019) for a detailed description.5 Assume

the presence of pervasive factors, Gt, and block-specific factors, Fk,t =
(
F

′

1,t, F
′

2,t, F
′

3,t

)′

,

as described earlier. In addition, a general factor structure may also include pairwise (or

semipervasive) factors, Fkj,t =
(
F

′

12,t, F
′

13,t, F
′

23,t

)′

. For instance, the factor F12,t loads on the

variables in blocks X1,t and X2,t; that is, the semipervasive factor captures the commonality

5The FARS package supports K > 3 blocks, including triple-wise (and higher-order) interactions. However,
the computational burden naturally increases when the number of blocks and/or the order of interactions
increases.
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only between blocks 1 and 2 without any dependence on block 3. This type of factor structure
is illustrated in Figure 1, which represents the relationships between pervasive, semipervasive,
and block-specific factors, when K = 3.

The ML-DFM with overlapping blocks is given by

xk,it = µ′
k,iGt + κ′

kji
Fkj,t + λ′

k,iFk,t + ϵk,it,

where k = 1, 2, 3 indicates the block, index i = 1, . . . , Nk denotes the i′th cross-section unit
of block k, t = 1, . . . , T is the period of time, and kj means interaction between blocks
k and j ∈ (1, 2, 3) with k ̸= j. µk,i, κkji

, and λk,i are the rG, rFkj
, and rFk

- dimensional
vectors of factor loadings. The number of pervasive, pairwise, and block-specific factors can
naturally vary in each block k. The idiosyncratic term denoted by ϵk,it satisfies the standard
assumptions of the DFM in (1).

The vector representation of the three-block ML-DFM with overlapping blocks is given by




X1,·t

X2,·t

X3,·t


 =




µ1 κ121 κ131 0 λ1 0 0
µ2 κ122 0 κ232 0 λ2 0
µ3 0 κ133 κ233 0 0 λ3







Gt

F12,t

F13,t

F23,t

F1,t

F2,t

F3,t




+




ϵ1,·t

ϵ2,·t

ϵ3,·t


 . (3)

Note that the total number of unobserved common factors involved in (3) is rG + rF12 +
rF13 + rF23 + rF1 + rF2 + rF3 . Hallin and Liška (2011) and Ergemen and Rodríguez-Caballero
(2023) propose a simple methodology based on the inclusion-exclusion principle of set theory
to determine the number of pervasive, semipervasive and block-specific factors. However, the
FARS package assumes that this number is known.

Figure 1: Factor structure of the ML-DFM with three different overlapping blocks of data.

Sequential least squares estimation

Estimation of the ML-DFM is based on the sequential approach proposed by Breitung and
Eickmeier (2016) in which the main goal is to minimize the following residual sums of squares
(RSS) function:
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S(F̂t, P̂ ) =
T∑

t=1

(
Xt − P̂ F̂t

)′ (
Xt − P̂ F̂t

)
, (4)

by a sequence of LS regressions. The algorithm can be executed for the general case of K

blocks with overlapping factors as follows:

1. Obtain initial values of the factors as follows:

(a) Employ canonical correlation analysis (CCA) on Xk,t to obtain initial estimates of

the global factor, Ĝ(0) =
(
Ĝ

(0)
1 , Ĝ

(0)
2 , . . . , Ĝ

(0)
T

)′
.

(b) Filter out the global component by regressing Xk,t on Ĝ(0), and get the correspond-

ing residuals, X
∗(0)
k,t , from each of the K separate regressions.

(c) Employ CCA on X
∗(0)
k,t to obtain the following lower-level factors, selecting the

corresponding blocks.

(d) Regress X
∗(0)
k,t on the respective lower-level factors involved and get the residuals.

(e) Steps c) and d) are executed sequentially until the initial estimates of the pair-

wise block factors are obtained. Denote by X
∗∗(0)
k,it the residuals after filtering the

pairwise factors of each block k.

(f) Run PC on X
∗∗(0)
k,t to get the block-specific factors F̂ (0) =

(
F̂

(0)
1,t , F̂

(0)
2,t , . . . , F̂

(0)
k,t

)′
.

(g) The initial matrix of loadings, P̂ (0), is estimated through time-series regressions
of Xk,t on the global factors, X∗

k,t on the semi-pervasive factors, and X∗∗
k,t on the

non-pervasive factors.

2. Updated estimates for the unobserved factors, F̂ (1), are obtained by LS regression of

Xk,t on P̂ (0) as follows F̂ (1) =
(
P̂ (0)′

P̂ (0)
)−1

P̂ (0)′

Xk,t.

3. The updated factors F̂ (1) are used to obtain the associated loadings matrix, P̂ (1), as in
Step 1.

4. Steps 2 and 3 are repeated until the RSS converges to a minimum, from which F̂ ∗ and
P̂ ∗ are obtained.

The algorithm above does not impose any normalization. Henceforth, although the vector
of common components P ∗F ∗

t is consistently estimated, the factors and loading matrices are
not identified separately. Consequently, Breitung and Eickmeier (2016) adapt the standard
normalization in PC analysis to separately identify P ∗ and F ∗

t . First, the different levels
of estimated factors (pervasive, pairwise, and block-specific) are orthogonalized with respect
to each other. A practical implementation consists of recursively regressing each factor on
the previously ordered ones and using the residuals as updated orthogonalized estimates.
For example, block-specific factors can be regressed on pairwise factors, and the resulting
residuals can then be regressed on pervasive factors. Since each regression corresponds to a
projection operation, this sequential procedure is equivalent to applying the Gram-Schmidt
orthogonalization process to the vector of estimated factors, F̂ ∗

t , following a predetermined
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ordering.6 Finally, the normalized pervasive factors are obtained as the main rG components
of the estimated common components. These are derived from the nonzero eigenvalues and

the corresponding eigenvectors of the matrix M̂
(

1
T

∑T
t=1 ĜtĜ

′
t

)
M̂ ′, where M̂ represents the

matrix of loadings corresponding to global factors. The same normalization procedure can be
applied to the semipervasive and block-specific factors, using the sample covariance matrices
of their respective common components.

In step 1 of the algorithm, initialization of P ∗ and F ∗
t is carried out using CCA. Alterna-

tively, the FARS package provides the alternative of using PC. Although both approaches
produce approximately the same estimated common components P̂ ∗F̂ ∗

t , the convergence of
CCA is typically faster, requiring fewer iterations to minimize RSS. However, when the factor
structure is highly complex, initializing with PC tends to be computationally more efficient;
see also Breitung and Eickmeier (2016) for the comparison of the small sample properties of
the sequential LS estimator initialized with CCA and PC for the two-level DFM.

2.3. Asymptotic distribution of factors

The construction of probabilistic scenarios for the unobserved factors requires knowledge of
their joint distribution. The asymptotic distribution of PC factors obtained from the DFM

in (1) is derived by Bai (2003). If F ′F
T = Ir and

√
N

T → 0 when N, T → ∞, the asymptotic

distribution of F̂t, at each moment, t, is given by

√
N
(
F̂t − Ft

)
d→ N

(
0, Σ−1

P ΓtΣ
−1
P

)
, (5)

where ΣP = limN→∞
P ′P
N and Γt = limN→∞

∑N
i=1

∑N
j=1 pip

′
jE(εitεjt) with pi and εit being

defined as in the DFM in (1). The finite sample approximation of the asymptotic covariance
matrix of F̂t can be estimated as follows:

MSEt =

(
P̂ ′P̂

N

)−1
Γ̂t

N

(
P̂ ′P̂

N

)−1

, (6)

where Γ̂t is a consistent estimator for Γt. Under the assumption of cross-sectionally uncorre-
lated idiosyncratic components, Bai and Ng (2006) propose the following estimator:

Γ̂BN
t =

1

N

N∑

i=1

p̂ip̂
′

iε̂
2
it, (7)

where ε̂it = xit − p̂
′

iF̂t are the residuals from the DFM model.

In many empirical settings, assuming that the idiosyncratic covariance matrix Σϵ is diagonal
imposes a stringent restriction that may not hold in practice. Therefore, alternatively, we
relax this assumption allowing the idiosyncratic components to be weakly cross-sectionally
correlated. Under these circumstances, Γt can be consistently estimated as proposed by

6This sequential orthogonalization procedure, though operationally implemented through regressions, re-
flects the structure of the Gram-Schmidt process and leverages the projection logic underpinning the famous
Frisch–Waugh–Lovell (FWL) theorem in regression analysis. Although we do not estimate coefficients, the
residuals obtained by regressing one factor level on another correspond to their orthogonal components, as in
the FWL decomposition.
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Fresoli, Poncela, and Ruiz (2024) by using adaptive thresholding of the sample covariances of
the idiosyncratic residuals, σ̂ij , as follows:

Γ̃F P R =
1

N

N∑

i=1

N∑

j=1

p̂ip̂
′
j

1

T

T∑

t=1

ε̂itε̂jtI (| σ̂ij |≥ cij) , (8)

where I(·) is the indicator function that takes value one when the argument is true and

zero otherwise, and cij = δωNT

[
V̂ ar [ε̂itε̂jt]

]1/2
, with V̂ ar [ε̂itε̂jt] = 1

T

∑T
t=1 [ε̂itε̂jt − σ̂ij ]2,

ωNT = 1√
N

+
√

log(N)
T , and δ chosen as proposed by Qiu and Liyanage (2019). It is important

to note that the estimator of Γt in (8) requires stationarity and, consequently, is constant
over time.

Regardless of whether Γt is obtained from (7) or (8), the estimated asymptotic covariance
matrix in (6) does not account for the uncertainty arising from the estimation of the loading
matrix. In this light, Maldonado and Ruiz (2021) propose a correction of the asymptotic
MSE based on subsampling in the cross-sectional space subsets of series of size N∗ < N ,
with each series in the subsample containing all temporal observations. For each subsample,

the loadings and factors are estimated by PC, obtaining F̂
∗(s)
t and P̂ ∗(s), for s = 1, ..., S.

The corrected finite sample approximation of the asymptotic MSE of F̂t can be estimated as
follows:

MSE∗
t =

1

N

(
P̂ ′P̂

N

)−1

Γ̂t

(
P̂ ′P̂

N

)−1

+
N∗

NS

S∑

s=1

((
F̂

∗(s)
t − F̂t

) (
F̂

∗(s)
t − F̂t

)′
)

. (9)

Based on the asymptotic normality in (5), Maldonado and Ruiz (2021) construct confidence
ellipsoids for the estimated factors with coverage probability 100 × α% as follows:

g(Ft, α) = {Ft ∈ IRr|(Ft − F̂t)MSE∗−1
t (Ft − F̂t) ≤ χ2

r(α)}, (10)

where χ2
r(α) is the α-quantile of the χ2 distribution with r degrees of freedom, with r being

the number of factors. Each point on the surface of the ellipsoid represents a possible joint
realization of all factors in the DFM. These boundary points correspond to extreme, yet
plausible, stress conditions.

2.4. Density Forecasts Under Stressed and Non-Stressed Conditions

The estimated factors, which summarize the information contained in a large set of predictors
Xt, are used to estimate the temporal evolution of the conditional density of a target variable.
In this subsection, we describe how these densities can be obtained under both stressed and
non-stressed conditions for the underlying factors.

Let yt be the observation at time t of the target variable. We start by obtaining h-step-ahead
forecasts of the τ∗-quantile of the conditional distribution of yt by estimating the following
FA-QR:

qτ∗(yt+h | yt, Ft) = µ(τ∗, h) + ϕ(τ∗, h)yt +
r∑

k=1

βk(τ∗, h)Fkt, (11)

where µ(τ∗, h), ϕ(τ∗, h), and βk(τ∗, h), for k = 1, . . . , r, are parameters, and Ft is the r × 1
vector of the underlying unobserved factors at time t. In practice, the underlying factors in
(11) are replaced by their estimations, F̂t, obtained as described above.
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The parameters of the FA-QR model in (11) are estimated using the algorithm by Koenker
and D’Orey (1987), which implements the quantile regression method originally developed
by Koenker and Bassett (1978). When the error terms are assumed to be independently
distributed according to a Laplace distribution, the estimator coincides with the Maximum
Likelihood (ML) estimator; see Ando and Tsay (2011). Bai and Ng (2008) establishes its
asymptotic normality.

The FA-QR provides estimates of the quantile function of the target variable, q̂τ∗(yt+h|yt, Ft),
for several values of τ∗. However, in practice, it is challenging to map these estimates into
a probability distribution function because of approximation errors and estimation noise.
Consequently, as in Adrian et al. (2019), we use the skew-t distribution proposed by Azzalini
and Capitanio (2003) to smooth the quantile function and estimate the conditional density
of yt. The skew-t density depends on four parameters as follows:

f(y; µ, σ, α, v) =
2

σ
st

(
y − µ

σ
; v

)
sT


α

y − µ

σ

√√√√
v + 1

v +
(

y−µ
σ

)2 ; v + 1


 , (12)

where st(·) and sT (·) denote the probability density function and the cumulative distribution
function of the Student’s t distribution, respectively. The skew-t distribution is specified by
its location µ, scale σ, shape α, and fatness v. At each time t, a skew-t distribution is fitted by
choosing the parameters that minimize the squared differences between the quantile estimates
and the skew-t implied quantiles, qτ∗(y; µ, σ, α, v), as follows:

(µ̂t+h, σ̂t+h, α̂t+h, v̂t+h) = argmin
µ,σ,α,v

T −h∑

t=1

(q̂τ∗(yt+h | yt, Ft) − qτ∗(yt; µ, σ, α, v))2. (13)

The methodology described above estimates the conditional density of yt under non-stressed
conditions. To construct conditional densities based on stressed scenarios, González-Rivera
et al. (2019) and González-Rivera et al. (2024) use the confidence ellipsoids defined in (10),
and determine the value of the factors on the α%-contour (stress level of the underlying
factors) that minimize (or maximize) a given quantile (τ) of the conditional distribution of the
target variable. For instance, consider that we are interested in deriving a stress scenario for
τ = 0.05, with the factors stressed at their α% level, FARS solves the following optimization
problem at each t

min
F

(S)
t

q̂0.05(yt+h|yt, F
(S)
t ) (14)

s.t. g(F
(S)
t , α) = 0,

where g(F
(S)
t , α) = 0 is a predetermined α-contour of the factors, that is, an ellipsoid that

contains Ft with probability α.

The values of F
(S)
t on the boundary of the ellipsoid g(F

(S)
t , α) = 0 represent extreme events of

the factors. After solving the optimization problem in (14), these optimized values are plugged
into the estimated FA-QRs. The conditional density of yt under stress is then obtained by
smoothing the corresponding quantiles as described in (13).7

7Note that the stressed scenarios are slightly different from that in González-Rivera et al. (2019) and
González-Rivera et al. (2024), who obtain stressed factors for each quantile of the distribution.
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3. The FARS package

In this section, we provide a detailed overview of the FARS package functionalities and explain
how users can implement the methodology described in Section 2 using the available functions.

3.1. ML-DFM in FARS

We begin by introducing the mldfm() function, which provides users with a flexible tool for
extracting factors using DFM or ML-DFM, with non-overlapping or overlapping blocks. In
the case of a simple DFM, the function requires two input arguments. The first is data, which
contains the N variables from which the factors are extracted, structured as a T × N matrix.
The second argument is global, which specifies the number of factors r to be extracted from
the data.

In the case of the ML-DFM without overlapping blocks, additional arguments must be pro-
vided to the mldfm function: i) the argument blocks defines the number of blocks K that make
up the data sample (the default is 1, corresponding to the DFM case); ii) block_ind requires
a vector that indicates the indices of the end column for each block k. For example, if K = 3
and N = N1 +N2 +N3, the argument block_ind should contain [N1, N1 +N2, N1 +N2 +N3];
iii) the argument local is a vector of integers, indicating the number of block-specific factors
rFk

to be extracted from each block k; iv) global specifies the number of pervasive factors
rG; v) method defines the factor initialization strategy for the sequential LS estimation: 0 for
the CCA (default) and 1 for PC8; vi) the arguments tol and max_iter define the tolerance
level and the maximum number of iterations allowed for the RSS minimization process, with
default values set to 10−6 and 1000, respectively.

In the case of the ML-DFM with overlapping blocks, an additional middle_layer argument
must be provided. middle_layer is a named list, where each name is a string specifying a
group of overlapping blocks (e.g. kj in the case of pairwise groups), and each value is the
number of factors rkj to extract from that group. For example, if we want to extract one
pairwise factor from blocks 1 and 3 (r13 = 1), the list should be defined as list("1-3" = 1).

Regardless of the particular specification of the model, the mldfm() function returns an S3
object of class mldfm as output. The object is a list containing several attributes described
in Table 1.

Attribute Description

factors T × r matrix containing all the extracted factors.
loadings N × r matrix of factor loadings with necessary zero restrictions.
residuals T × N residual matrix from the model fit.

fitted T × N matrix containing the fitted values X̂.
method The initialization strategy used (CCA or PCA).
iterations Number of iterations performed until convergence (0 in DFM).
factors_list A summary list indicating the number of factors extracted at each level.

Table 1: Attributes of the mldfm object. The data stored in the factors and loadings

matrices follow the hierarchical order (from global to local) described in factors_list.

The mldfm object has typical S3 methods: print(), summary() and plot(). The first two

8PC is implemented using the prcomp() function from the package stats.
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functions offer a brief overview of the model estimation outcome, while plot() offers pre-
configured visualization tools. The call of the plot function on a mldfm object generates
distinct line charts for all estimated factors, each enriched with confidence interval bands that
assume cross-sectionally independent and homoskedastic idiosyncratic components. Further-
more, an optional input argument dates can be provided. dates is a vector of dates to be
displayed on the x-axis, replacing the default integer time index ranging from 1 to T . An
additional optional argument, flip, can be supplied to improve the interpretability of the
plots. flip is a binary vector (with values 0 or 1) indicating whether each estimated factor
or the corresponding loadings should be sign-flipped before plotting. A value of 1 for a given
element reverses its sign, while 0 leaves it unchanged. This is useful when the arbitrary sign
indeterminacy of factor models leads to less interpretable visualizations. An optional argu-
ment, fpr, can be set to TRUE to estimate the asymptotic MSE of the factors using Γ̃FPR as
defined in equation (8). Differently, the default setup (FALSE) uses Γ̂BN

t as described in Equa-
tion (7). Moreover, using the plot() function, it is possible to visualize estimated loadings
or residuals, specifying a which argument with values "loadings" or "residuals". With
"loadings", a set of bar charts is generated, one for each factor. Each bar chart displays
the estimated loadings along with their corresponding confidence intervals. Differently, with
"residuals", a figure depicting the correlation heatmap of the residuals is produced. In both
cases, the user can provide a list of variable names using the optional var_names argument.
This enables the replacement of the default indexes from VAR 1 to VAR N with the appropri-
ate variable names. Specific attributes of the mldfm object can be accessed using appropriate
functions, factors(), loadings(), residuals() and fitted().

3.2. Probability distribution of factors in FARS

A two-step procedure is implemented in FARS to obtain the asymptotic joint probability
density of the factors with the subsampling correction.

The first step involves running a subsampling method to extract factors from subsets of N∗

variables, selected from the entire data sample. This is implemented using the mldfm_subsampling()

function. The function iteratively generates n_samples subsamples of size sample_size and
estimates factors using the ML-DFM approach through the mldfm() function9. This approach
offers two main advantages. First, the arguments of mldfm_subsampling() are the same as
those of mldfm(), plus two additional arguments to define the number and size of the sub-
samples. Second, the function returns an object mldfm_subsample containing a list of mldfm

objects, enabling the user to apply standard methods to each of the subsample results. In ad-
dition, an optional seed argument can be provided to ensure the reproducibility of the results.
A mldfm_subsample object contains the attributes listed in Table 2 and provides print(),
summary() and plot() methods, as well as get_mldfm_list() and get_mldfm_model() func-
tions to access the entire list or a specific mldfm object, respectively.

The second step involves constructing confidence regions for the factors, as described in equa-
tion (10). This operation is performed by the create_scenario() function, which requires
three main arguments. The first is model, which contains the result of the mldfm() function
applied to the full dataset and serves as the center of the ellipsoid. The second is subsamples,

9The argument n_samples is the number of samples, while sample_size is the proportion of the cross-
sectional dimension, N , which composes the subsamples (e.g., 0.9 to select 90% of the original variables). In
the case of multiple blocks, the proportion is maintained in all the blocks.
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Attribute Description

models A list containing the n_samples mldfm objects.
n_samples The number of subsamples generated.

sample_size The proportion of the sample used for each subsample N∗

N .
seed The seed used for random sampling.

Table 2: Attributes of the mldfm_subsample object.

which uses the output of mldfm_subsampling() to compute the MSE correction as defined
in Equation (9). The third is alpha, which defines the coverage probability (i.e., the level
of stress) of the ellipsoids. An optional argument, fpr, can be set to TRUE to estimate the
asymptotic MSE of the factors using Γ̃FPR as defined in equation (8). Differently, the default
setup (FALSE) uses Γ̂BN

t as described in Equation (7). The output of create_scenario()

is a fars_scenario object whose attributes are presented in Table 3. A fars_scenario

object is provided with the standard S3 methos (print(), summary() and plot()) and with
get_ellipsoids() and get_sigma_list() functions to access specific attributes. In partic-
ular, get_ellipsoids() returns a list of T matrices of size z × r representing the ellipsoid
points in r dimensions at each time t. The number of points z depends on the number of
dimensions r. In the case of only one factor (r = 1), only a confidence interval is built based
on the specified alpha level; for this reason, z = 2 (i.e., the upper and the lower bounds). In
the case of two dimensions (r = 2), the 2-D ellipsoid is composed of z = 300 points and is
built using the ellipse package; see Murdoch and Chow (2023). Lastly, in the case of more
than two dimensions (r > 2), the r-D ellipsoid is generated through the hyperellipsoid()

and hypercube_mesh() functions from the SyScSelection package (Kopfmann 2023). In this
case, the number of points composing the ellipsoid depends on the phi parameter of the
hypercube_mesh() function, which defines the scalar fineness of the mesh. In FARS, phi is
set to 8.

Attribute Description

ellipsoids A list containing T matrices of dimensions r × z.
center T × r matrix containing all the factors used as center coordinates for the ellipsoids.
sigma A list of T covariance matrices of dimensions r × r.
periods Number of time periods T .
n_points Number of points z used to define each ellipsoid.
alpha Confidence level for the ellipsoids.

Table 3: Attributes of the fars_scenario object.

3.3. Conditional Density Under Stressed and Non-Stressed Conditions in
FARS

In this subsection, we present the tools provided by FARS for obtaining conditional density
forecasts in both the non-stressed and stressed scenarios.

The first step is to estimate the FA-QRs10. This operation is performed through the compute_fars()

10FARS estimate FA-QRs using the quantreg package (Koenker, Portnoy, Ng, Zeileis, Grosjean, and Ripley
2025). The standard deviations of the estimated parameters are calculated using the sandwich formula proposed
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function, which estimates the parameter of the FA-QR in Equation (11). The function re-
quires only three arguments to work. First, dep_variable, which contains the dependent
variable yt. Second, factors, which includes the factors the user wants to add to the quan-
tile regression model.11 Third, h, which defines the forecast horizon (the default is h = 1).
The function estimates the FA-QRs for a fixed set of quantiles: 0.05, 0.25, 0.50, 0.75, and
0.95, as these are later used for the skew-t density fit. Alternatively, the user can modify
the extreme quantiles by setting an optional edge argument. For example, setting edge =

0.01 forces the edge quantiles to 0.01 and 0.99. The default value is 0.05. The output of
compute_fars() is an S3 object of type fars, which contains a set of attributes listed in
Table 4.

Attribute Description

models A list of 5 rq objects, each for a specific quantile regression.
periods Number of time periods T .
n_factors Number of factors used in the regressions.
h Lag order used in the regressions.
levels The list of estimated quantiles.

Table 4: Attributes of the fars object.

Like the mldfm object, the fars object has standard S3 methods. The print() function
provides a brief overview of the FA-QRs. The summary() function returns a detailed summary
of each rq object by iteratively calling summary() on each of them. Lastly, the plot() function
generates a line charts of the fitted values. The function can display customized dates on the x-
axis by setting the corresponding optional argument dates. Additional methods are provided.
A specific rq object can be accessed through get_rq_model(). The functions fitted() and
residuals() return, respectively, a T × Q matrix of fitted values and residuals estimated
for the five quantiles (Q = 5). The functions coef() and logLik() display the estimated
coefficients and log-likelihood for all quantiles. Moreover, predict() allows out-of-sample
estimation for the five quantiles, taking the required input data as a matrix through the
newdata argument. An important feature of the predict() function is the ability to estimate
stressed quantiles by providing stressed factors in the newdata matrix instead of the baseline
factors. These stressed factors can be obtained using the compute_stressed_factors()

function, which implements the optimization procedure described in Section 2 (see Equation
13). In brief, the function estimates a FA-QR for the selected quantile level qtau and lag
order h, and identifies the factor values on the contour ellipsoid that minimize or maximize
the conditional quantile of the dependent variable. The resulting stressed factors can be then
used in predict() to compute quantiles under stressed scenarios.

The second step to obtaining a density forecast is to estimate the density of the target variable
yt by fitting a skewed-t distribution. This operation is performed via the compute_density()

function, which requires a quantiles argument, containing the quantiles estimated before12.
Depending on the quantiles provided, the density function returns the non-stressed or the

by Powell (1989) under the option ker, which is commonly used in practice.
11These can be easily accessed through the factors attribute of the mldfm object obtained after estimating

the ML-DFM by mldfm().
12If the quantiles computed with compute_fars() have been modified via the edge argument, the density

function must be informed of the correct quantiles levels. This can be done by setting the levels argument
using levels obtained by calling get_quantile_levels() on the fars object.
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stressed density. Additional arguments can be provided to compute_density(), including
est_points, which set the number of estimation points (default is 512), random_samples,
which define the number of random samples to be drawn from the estimated distribution
(default is 5000) and support, which select the lower and upper bounds of the random
variable support (default is c(-10,10)). For each period t, compute_density() initializes
the skewed-t distribution by setting three parameters (location, scale, and shape) using the
quantile values provided as input. The function implements two optimization procedures to
fit the skew-t distribution. The default is a linear optimization using optim() from stats,
which implements the L-BFGS-B method. The second is a non-linear optimization method
that can be selected by setting the argument nl = TRUE. The non-linear method is from
the nloptr package and is based on NLOPT_LN_SBPLX (Johnson (2007)). In both cases, the
theoretical quantiles and the probability distribution function (pdf) of the fitted skewed-t
distribution are computed using qst() and dst() from sn (Azzalini (2023)), respectively.
Finally, a seed argument can be provided to ensure the reproducibility of the results. The
compute_density() function returns a fars_density object that provides the attributes
listed in Table 5.

Attribute Description

density The estimated densities at time t.
distribution The random draws from the fitted skew-t distribution at each t.
optimization The optimization method implemented: linear or non-linear.
eval_points The sequence of evaluation points used to compute the density.

Table 5: Attributes of the fars_density object. Both density and distribution are
provided in matrix form with one row for each time t.

The fars_density object is equipped with standard S3 methods. The print() function
provides a brief overview of the estimated density. The summary() function returns the
mean, median, and standard deviation of the distribution at each time t. Finally, the plot()

function generates a 3D plot of the density, with evaluation points (eval_points) on the x-
axis, time indices on the y-axis, and density values on the z-axis. The function can also display
custom dates on the y-axis by setting the optional argument time_index. The distribution
is accessible through the get_distribution() function.

The final step in obtaining a conditional density forecast is to extract the conditional quan-
tile from the estimated skew-t distribution. This can be performed using the function
quantile_risk(). This function requires two parameters: an object of class fars_density

and the quantile that must be extracted qtau. The quantile extraction is implemented via
quantile() from stats. Depending on the fars_density object provided, either a non-
stressed or a stressed density, the quantile_risk() extracts a non-stressed quantile or a
stressed quantile of the target variable (e.g., in the case of GDP growth with qtau = 0.05,
it extracts Growth at Risk or Growth in Stress).

Figure 2 shows a recap of the FARS package workflow for both the non-stressed and the
stressed scenarios.

4. Illustration of FARS package functionalities
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Figure 2: FARS package workflow for both non-stressed and stressed scenarios.

In this section, we illustrate the functionalities of the FARS package by extracting factors,
estimating conditional densities and obtaining stress scenarios in the context of: i) aggregate
inflation in Europe; and ii) building scenarios for US growth density. Regardless of the
particular application, the first step is to install and load the package FARS, which is publicly
available on CRAN under the GPL-3 license, as follows:

R> install.packages("FARS")
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The development version is available on GitHub at https://github.com/GPEBellocca/FARS.
This can be downloaded using the devtools package with the following command:

R> devtools::install_github("GPEBellocca/FARS")

After installing the package from CRAN or GitHub, it should be loaded as follows:

R> library(FARS)

4.1. European inflation: Risk in extreme right quantiles.

In the first illustration, we analyze the risk of an inflation increase in Europe. To do this,
we collect monthly headline CPI data (Ha, Kose, and Ohnsorge 2023) from January 2005 to
December 2024 (T = 240) for a set of N = 38 European countries. The countries considered
are divided into three different blocks, depending on geographical location:

• West (N1 = 11): Austria, Belgium, France, Germany, Ireland, Italy, Luxembourg,
Portugal, Spain, Switzerland, United Kingdom.

• East (N2 = 21): Belarus, Bosnia and Herzegovina, Bulgaria, Croatia, Cyprus, Czech
Republic, Estonia, Greece, Hungary, Kosovo, Latvia, Lithuania, Malta, Moldova, Rep.,
North Macedonia, Poland, Romania, Slovakia, Slovenia, Turkey, Ukraine.

• North (N3 = 6): Denmark, Finland, Iceland, The Netherlands, Norway, Sweden.

For each country, CPI prices are transformed into annualized month-on-month (mom) in-
flation, with each inflation series sequentially cleaned of seasonal effects and outliers. The
processed data can be imported using:

R> data("inflation_data", package = "FARS")

To estimate a ML-DFM through mldfm(), we first need to decide how many factors to extract
from each block. We extract one global factor common to all N countries, and one block-
specific factor common to countries in each of the three blocks. This operation is performed
as follows:

R> mldfm_result <- mldfm(inflation_data,

+ blocks = 3,

+ block_ind = c(11,32,38),

+ global = 1,

+ local = c(1,1,1))

Since we do not provide any method, tol, and max_iter, the default values are enforced. The
mldfm object returned is stored in the mldfm_result variable. After completion, the function
summary() can be used to display an overview of the estimated ML-DFM, including the
number of factors extracted at each level of the hierarchical structure used in the Sequential
LS estimation.

https://github.com/GPEBellocca/FARS
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R> summary(mldfm_result)

Summary of Multilevel Dynamic Factor Model (MLDFM)

===================================================

Number of periods : 239

Number of factors : 4

Number of nodes : 4

Initialization method : CCA

Number of iterations to converge: 33

Factor structure:

- 1-2-3 : 1 factor(s)

- 1 : 1 factor(s)

- 2 : 1 factor(s)

- 3 : 1 factor(s)

Residual diagnostics:

- Total residual sum of squares (RSS): 4506.23

- Average RSS per time period : 18.85

Additionally, using plot(), it is possible to obtain a graphical representation of the estimated
factors, loadings, and residuals. This is performed by calling the plot function three times
in sequence. For a more precise result, we provide the plot function with appropriate arrays
composed of dates and country names using the optional arguments. Also, we specify that
the global factor and the local factors corresponding to blocks 1 and 2 must be flipped in
sign. The results are plotted in Figures 3, 4 and 5, respectively.

R> plot(mldfm_result, dates = dates, flip = c(1,1,1,0))

R> plot(mldfm_result, which = "loadings", var_names = countries, flip = c(1,1,1,0))

R> plot(mldfm_result_gm, which = "residuals", var_names = countries)

In order to analyze potential inflation risk in Europe we utilize Germany as an example. To
do this, we extract the corresponding inflation series from the data set and the factors from
mldfm_result.

R> dep_variable <- as.numeric(inflation_data[[4]])

R> factors <- factors(mldfm_result)

The next step is to estimate the FA-QRs which will be used as baseline for our scenario
analysis:13

R> fars_result <- compute_fars(dep_variable, factors, h = 1)

Running Factor-Augmented Quantile Regressions (FA-QRs)...

Completed

13For this task, we consider the simplest case with h=1
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(a) Global factor (b) Block 1 factor

(c) Block 2 factor (d) Block 3 factor

Figure 3: Estimated factors of headline inflation in Europe together with 95% confidence
bounds.

(a) Global factor loadings (b) Block 1 factor loadings

(c) Block 2 factor loadings (d) Block 3 factor loadings

Figure 4: Estimated factor loadings of headline inflation in Europe together with 95% confi-
dence bounds.
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Figure 5: Correlation heatmap of estimated idiosyncratic components of headline inflation in
Europe.

After this, we can print a recap of the FA-QRs and inspect the estimated coefficients across
all quantile regressions. Additional information can be observed calling summary() function.

R> print(fars_result)

Factor-Augmented Quantile Regressions (FARS)

===========================================

Number of periods: 238

Number of factors: 4

Lag: 1

Quantile levels: 0.05 0.25 0.50 0.75 0.95

R> coef(fars_result)

0.05 0.25 0.50 0.75 0.95

(Intercept) -2.554 0.030 2.066 3.475 6.964

LagY 0.096 0.046 0.024 -0.013 -0.215

F1 -0.911 -0.891 -1.219 -1.423 -2.536

F2 -0.930 -0.213 0.208 0.134 0.204

F3 -1.165 -0.467 -0.187 -0.083 -0.136

F4 0.198 0.422 0.339 0.233 1.054

If the user is interested in performing additional diagnostic analyses on a specific quantile,
the corresponding rq object can be retrieved as follows:

R> get_rq_model(fars_result,tau = 0.25)

Call:

quantreg::rq(formula = y ~ ., tau = tau_i, data = df)
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Coefficients:

(Intercept) LagY F1 F2 F3 F4

0.03043957 0.04618208 -0.89118084 -0.21310657 -0.46693905 0.42240789

Degrees of freedom: 238 total; 232 residual

Non-stressed scenario

To estimate the density under the non-stressed scenario we first need the quantiles’ series.
For this example, we use the in-sample estimates obtained with the fitted() method of fars

object.14 The fitted values can be viasualized using the plot function (see Figure 6, panel a).

R> quantiles <- fitted(fars_result)

R> plot(fars_result, dates = dates[-1])

(a) Non-stressed scenario (b) Stressed scenario

Figure 6: Non-stressed (left panel) and stressed scenario (right panel) quantiles for Germany
headline inflation.

The estimates, stored in the quantiles variable, are then used to fit a skew-t distribution,
generating the density for the non-stressed scenario. This is done by applying the non-linear
optimization method and providing an appropriate support for the inflation case.

R> ns_density <- compute_density(quantiles,

+ support = c(-30,30),

+ seed = 42,

+ nl=TRUE)

Estimating skew-t densities from forecasted quantiles...

Completed

The generated fars_density object can be used to plot the non-stressed density (see Figure
7, panel a) and visualize an overview of the density estimation.

14The same result could be obtained using predict() and passing as newdata the same data used for fitting
the FA-QRs.
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R> plot(ns_density, time_index = dates[-1])

R> print(ns_density)

FARS Density

====================

Time observations : 238

Estimation points : 512

Random samples : 5000

Support range : [ -30 , 30 ]

Optimization : Non-linear

(a) Non-stressed density (b) Stressed density

Figure 7: Non-stressed (left panel) and stressed (right panel) densities for Germany headline
inflation.

Finally, we derive the Inflation at Risk (IaR) at qtau = 0.99 applying the quantile_risk()

function to the non-stressed density.

R> IaR <- quantile_risk(ns_density, qtau = 0.99)

Stressed scenarios.

As explained in Section 3, the computation of stressed scenarios can be performed in two
steps. First, we need to obtain the asymptotic distribution of the factors. For this goal,
we implement the subsampling procedure using the appropriate function. In our case, we
generate 100 samples by extracting 95% of the countries in each block.

R> mldfm_ss_result <- mldfm_subsampling(inflation_data,

+ blocks = 3,

+ block_ind = c(11,32,38),

+ global = 1,

+ local = c(1,1,1),

+ n_samples = 100,

+ sample_size = 0.95,

+ seed = 42)
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Generating 100 subsamples...

Subsampling completed.

Each of the 100 models stored in mldfm_ss_result can be manipulated as a distinct mldfm

object. For example, we can visualize the summary of the ML-DFM estimated for sample
number 10.

R> summary(get_mldfm_model(mldfm_ss_result, index = 10))

Summary of Multilevel Dynamic Factor Model (MLDFM)

===================================================

Number of periods : 239

Number of factors : 4

Number of nodes : 4

Initialization method : CCA

Number of iterations to converge: 23

Factor structure:

- 1-2-3 : 1 factor(s)

- 1 : 1 factor(s)

- 2 : 1 factor(s)

- 3 : 1 factor(s)

Residual diagnostics:

- Total residual sum of squares (RSS): 4226.02

- Average RSS per time period : 17.68

The second step is to generate the stressed scenario by calling the create_scenario() func-
tion. For this exercise, we consider the highest stress level of alpha = 0.99 and default
Γ̂BN

t .

R> scenario <- create_scenario(model = mldfm_result,

+ subsample = mldfm_ss_result,

+ alpha=0.99)

Constructing scenario using 100 subsamples, alpha = 0.99

and standard time-varying Gamma...

Scenario construction completed.

A summary of the scenario can be displayed as follows:

R> summary(scenario)

FARS Scenario Summary

======================

Number of periods : 239
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Ellipsoid dimensions : 4

Points per ellipsoid : 1072

Confidence level : 99 %

FPR Gamma : FALSE

Center (factor estimates):

Mean : 0

Std. Dev : 0.9984

Min : -5.6607

Max : 4.3215

Ellipsoid variability (diagonal of Sigma):

Mean : 0.3317

Std. Dev : 0.5728

Min : 0.0079

Max : 7.4062

Now that we have our scenario we can stress accordingly our factors. Since we are interested
in Inflation risk, our objective is to maximize the dependent variable for the chosen quantile
(qtau = 0.99).

R> ellipsoids <- get_ellipsoids(scenario)

R> stressed_factors <- compute_stressed_factors(dep_variable,

+ factors,

+ h=1,

+ qtau=0.99,

+ direction="max",

+ ellipsoids=ellipsoids)

Using the new factors, the stressed quantiles can be estimated with the predict() method of
our fars object.15 Moreover, by providing newdata to the plot() function, it is also possible
to visualize the stressed quantiles (see Figure 6 panel b).

R> newdata <- cbind(dep_variable,stressed_factors)

R> newdata <- newdata[-nrow(newdata), ]

R> stressed_quantiles <- predict(fars_result, newdata)

R> plot(fars_result, newdata, dates[-1])

As in the non-stressed case, we fit a skew-t distribution to obtain the stressed density, this
time using the matrix of stressed quantiles as input. Again, we can visualize the density with
the plot function (see Figure 7, panel b).

R> s_density <- compute_density(stressed_quantiles,

+ support = c(-30,30),

+ seed = 42,

+ nl=TRUE)

15The last row of the newdata matrix is dropped to keep only the in-sample period.
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Estimating skew-t densities from forecasted quantiles...

Completed

The last step is deriving the Inflation in Stress (IiS) for qtau = 0.99 by feeding quantile_risk()

with the stressed densities.

R> IiS <- quantile_risk(s_density, qtau = 0.99)

In Figure 8, we plot the final IaR and IiS estimates along with the dependent variables for
the period spanning from March 2005 to December 2024. We observe that IiS is higher than
IaR. This worse outcome would be neglected if we only estimated IaR, which assumes that
factors evolve according to an average scenario.

Figure 8: Germany monthly mom headline inflation (black lines), together with 99% IaR
(blue) and 99% IiS stressed with α = 99% (red).

4.2. Economic growth in the US: Risk in extreme left quantiles.

In our second illustration, we follow González-Rivera et al. (2024) and construct densities
for annualized quarterly GDP growth in the US with the underlying factors extracted in the
context of a ML-DFM using a data sample composed of three blocks. The first block contains
N1 = 63 international macroeconomic variables (GDP growth for 63 countries), the second
block contains N2 = 248 domestic macroeconomic variables, and the third block contains
N3 = 208 international financial variables. All variables are observed quarterly from 2005Q3
to 2020Q1.16 The dataset, composed of N = N1 + N2 + N3 = 519 variables and the US GDP
growth can be imported using:

R> data("mf_data", package = "FARS")

R> data("dep_variable", package = "FARS")

We extract one global factor common to all N variables, a pairwise factor common to all
international variables (international macroeconomic and international financial blocks), and
one block-specific factor common to the variables in each of the three blocks. Then, we check
the summary of the model.

16Data are retrieved from the replication files of González-Rivera et al. (2024).
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R> mldfm_result <- mldfm(mf_data,

+ blocks = 3,

+ block_ind = c(63,311,519),

+ global = 1,

+ local = c(1,1,1),

+ middle_layer = list("1-3" = 1))

R> summary(mldfm_result)

Summary of Multilevel Dynamic Factor Model (MLDFM)

===================================================

Number of periods : 59

Number of factors : 5

Number of nodes : 5

Initialization method : CCA

Number of iterations to converge: 47

Factor structure:

- 1-2-3 : 1 factor(s)

- 1-3 : 1 factor(s)

- 1 : 1 factor(s)

- 2 : 1 factor(s)

- 3 : 1 factor(s)

Residual diagnostics:

- Total residual sum of squares (RSS): 15215.67

- Average RSS per time period : 257.89

Using the extracted factors, we fit our FA-QR models, this time changing the extreme quan-
tiles to 1% and 99%.

R> factors <- factors(mldfm_result)

R> fars_result <- compute_fars(dep_variable,

+ factors,

+ h = 1,

+ edge = 0.01)

Running Factor-Augmented Quantile Regressions (FA-QRs)...

Completed

R> print(fars_result)

Factor-Augmented Quantile Regressions (FARS)

===========================================

Number of periods: 58

Number of factors: 5

Lag: 1

Quantile levels: 0.01 0.25 0.50 0.75 0.99
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Non-stressed scenario

As in the inflation exercise, we use the estimated quantiles to fit the non-stressed density
and compute the Growth at Risk for the lower tail at the 1% quantile. The quantiles and
the resulting density distribution are shown in Figure 9, panel a, and Figure 10, panel a,
respectively.

R> quantiles <- fitted(fars_result)

R> plot(fars_result, dates = dates[-1])

seed = 42)

(a) Non-stressed scenario (b) Stressed scenario

Figure 9: Non-stressed (left panel) and stressed scenario (right panel) quantiles for US GDP
growth.

R> levels <- get_quantile_levels(fars_result)

R> ns_density <- compute_density(quantiles,

+ support = c(-30,10),

+ levels = levels,

+ seed = 42)

Estimating skew-t densities from forecasted quantiles...

Completed

R> plot(ns_density, time_index = dates[-1])

R> GaR <- quantile_risk(ns_density, qtau = 0.01)

Stressed scenario

To build the stressed scenario we implement the same two-step procedure using the mldfm_subsampling()

and create_scenario() functions. As for the inflation case, we generate 100 samples by ex-
tracting 95% of the variables from each block and consider the highest stress level of alpha

= 0.99 with default Γ̂BN
t .

R> mldfm_ss_result <- mldfm_subsampling(mf_data,

+ blocks = 3,
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(a) Non-stressed density (b) Stressed density

Figure 10: Non-stressed (left panel) and stressed (right panel) densities for US GDP growth.

+ block_ind = c(63,311,519),

+ global = 1,

+ local = c(1,1,1),

+ middle_layer = list("1-3" = 1),

+ n_samples = 100,

+ sample_size = 0.95,

+ seed = 42)

Generating 100 subsamples...

Subsampling completed.

R> scenario <- create_scenario(model = mldfm_result,

+ subsample = mldfm_ss_result,

+ alpha=0.99)

Constructing scenario using 100 subsamples, alpha = 0.99

and standard time-varying Gamma...

Scenario construction completed.

Now we can stress our factors. Since we are interested in GDP growth risk, our objective is
to minimize the dependent variable for the chosen low quantile (qtau = 0.01).

R> ellipsoids <- get_ellipsoids(scenario)

R> stressed_factors <- compute_stressed_factors(dep_variable,

+ factors,

+ h=1,

+ qtau=0.01,

+ direction="min",

+ ellipsoids = ellipsoids)

The stressed factors are input into the FA-QRs to estimate GDP growth quantiles under
stress, from which we derive the density distribution and the corresponding Growth in Stress.
The resulting quantiles and density distribution are shown in Figure 9, panel b), and Figure
10, panel b), respectively.
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R> newdata <- cbind(dep_variable,stressed_factors)

R> newdata <- newdata[-nrow(newdata), ]

R> stressed_quantiles <- predict(fars_result, newdata)

R> plot(fars_result, newdata, dates[-1])

R> s_density <- compute_density(stressed_quantiles,

+ support = c(-30,10),

+ levels = levels,

+ seed = 42)

Estimating skew-t densities from forecasted quantiles...

Completed

R> plot(s_density, time_index = dates[-1])

R> GiS <- quantile_risk(s_density, qtau = 0.01)

In Figure 11, we plot the in-sample GaR and GiS estimates along with the dependent variables.
As in González-Rivera et al. (2024), we observe that GiS is more negative than GaR. This
negative outcome would be neglected if we only estimated GaR, which assumes that factors
evolve according to an average scenario.

Figure 11: US quarterly growth: observed annualized rates in black, 1% GaR in blue and 1%
GiS stressed with α = 99% in red.

5. Summary and discussion

The FARS package offers a suite of tools in R for modeling and designing economic scenarios
based on conditional densities derived from ML-DFMs and FA-QRs. It provides an integrated
framework to extract multilevel factors with a flexible hierarchical structure, estimate their
relationship with macroeconomic variables, and build stressed scenarios. The empirical appli-
cations presented in this paper illustrate how FARS can be used to analyze the distribution of
European inflation and US GDP growth under adverse conditions, linking factor dynamics to
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macroeconomic outcomes. The FARS package is available on the Comprehensive R Archive
Network (CRAN).
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