Package ‘heartbeatr’

September 18, 2025

Type Package
Title A Workflow to Process Data Collected with PULSE Systems
Version 1.0.0

Description
Given one or multiple paths to files produced by a PULSE multi-channel or a PULSE one-
channel system (<https://electricblue.eu/pulse>) from a single experi-
ment: [1] check pulse files for inconsistencies and read/merge all data, [2] split across time win-
dows, [3] interpolate and smooth to optimize the dataset, [4] compute the heart rate fre-
quency for each channel/window, and [5] facilitate quality control, summarising and plotting.
Heart rate frequency is calculated using the Automatic Multi-scale Peak Detection algo-
rithm proposed by Felix Scholkmann and team. For more details see Scholk-
mann et al (2012) <doi:10.3390/a5040588>. Check origi-
nal code at <https://github.com/ig248/pyampd>.
ElectricBlue is a non-profit technology transfer startup creating research-
oriented solutions for the scientific community (<https://electricblue.eu>).

License MIT + file LICENSE

Encoding UTF-8

LazyData true

Suggests knitr, rmarkdown, testthat (>= 3.0.0)
Config/testthat/edition 3

Imports av, cli, dplyr, ggplot2, lubridate, magrittr, purrr, readr,
stringr, tibble, tidyr, transformr

Depends R (>=3.5.0)
RoxygenNote 7.3.3

VignetteBuilder knitr
NeedsCompilation no

Author Rui Seabra [aut, cre] (ORCID: <https://orcid.org/0000-0002-0240-3992>),
Fernando Lima [aut] (ORCID: <https://orcid.org/0000-0001-9575-9834>)

Maintainer Rui Seabra <ruisea@gmail.com>
Repository CRAN
Date/Publication 2025-09-18 09:00:02 UTC

https://electricblue.eu/pulse
https://doi.org/10.3390/a5040588
https://github.com/ig248/pyampd
https://electricblue.eu
https://orcid.org/0000-0002-0240-3992
https://orcid.org/0000-0001-9575-9834

2 find_peaks

Contents
find_peaks e e 2
S.pulse . . .o 3
PULSE e 3
PULSE _by_chunks 8
pulse_choose_keep 11
pulse_data L e e e 13
pulse_doublecheck 13
pulse_example L. e e e 15
pulse_find_peaks_all_channels 16
pulse_find_peaks_one_channel L oo L 17
pulse_halve e e 19
pulse_heart 19
pulse_interpolate e 21
pulse_normalize 22
pulse_optimize 25
pulse_plot 27
pulse_plot_one e e 29
pulse_plot_raw L e e e e e e e 30
pulse_read 31
pulse_smooth L e e 33
pulse_split 34
PUlSe_SUMMATISE v v vt e e e e e e e e e e e 37

Index 40

find_peaks Find peaks of waves in raw PULSE data
Description

heartbeatr-package Find peaks of waves in raw PULSE data

Usage

find_peaks(t, y)

Arguments
t time
y val
Value

A numeric vector indicating the indexes where peaks were detected.

is.pulse

is.pulse heartbeatr utility function

Description

heartbeatr-package utility function

Usage

is.pulse(path)

Arguments

path

Value

file path

A logical indicating if the path supplied corresponds to a valid PULSE file or not.

PULSE

Process PULSE data from a single experiment (STEPS 1-6)

Description

ALL STEPS EXECUTED SEQUENTIALLY

step 1-pulse_read()

step 2-—pulse_split()

step 3 —pulse_optimize()

step 4 —pulse_heart()

step 5—pulse_doublecheck()
step 6 —pulse_choose_keep()
extra step—pulse_normalize()
extra step —pulse_summarise()

visualization —pulse_plot() and pulse_plot_raw()

This is a wrapper function that provides a shortcut to running all 6 steps of the PULSE multi-channel
data processing pipeline in sequence, namely pulse_read() » pulse_split() » pulse_optimize()
» pulse_heart() » pulse_doublecheck() » pulse_choose_keep().

Please note that the heartbeatr package is designed specifically for PULSE systems commercial-
ized by the non-profit co-op ElectricBlue (https://electricblue.eu/pulse) and is likely to fail if data
from any other system is used as input without matching file formatting.

PULSE() takes a vector of paths to PULSE csv files produced by a PULSE system during a single
experiment (either multi-channel or one-channel, but never both at the same time) and automat-
ically computes the heartbeat frequencies in all target channels across use-defined time windows.

4 PULSE

The entire workflow may take less than 5 minutes to run on a small dataset (a few hours of data) if
params are chosen with speed in mind and the code is run on a modern machine. Conversely, large
datasets (spanning several days) may take hours or even days to run. In extreme situations, datasets
may be too large for the machine to handle (due to memory limitations), and it may be better to pro-
cess batches at a time (check PULSE_by_chunks () and consider implementing a parallel computing
strategy).

Usage

PULSE (
paths,
window_width_secs
window_shift_secs
min_data_points = ,
interpolation_freq = 40,
bandwidth = 0.2,
doublecheck = TRUE,
lim_n = 3,
lim_sd = 0.75,
raw_v_smoothed = TRUE,
correct = TRUE,
discard_channels = NULL,
keep_raw_data = TRUE,
subset = 0,
subset_seed = NULL,
subset_reindex = FALSE,
process_large = FALSE,
show_progress = TRUE,
max_dataset_size = 20

S I
0 O W
[

Arguments

paths character vectors, containing file paths to CSV files produced by a PULSE sys-
tem during a single experiment.

window_width_secs

numeric, in seconds, defaults to 30; the width of the time windows over which
heart rate frequency will be computed.

window_shift_secs
numeric, in seconds, defaults to 60; by how much each subsequent window is
shifted from the preceding one.

min_data_points
numeric, defaults to 0.8; decimal from O to 1, used as a threshold to discard
incomplete windows where data is missing (e.g., if the sampling frequency is
20 and window_width_secs = 30, each window should include 600 data points,
and soif min_data_points = 0.8, windows with less than 600 * 0.8 = 480 data
points will be rejected).

PULSE

interpolation_freq

bandwidth

doublecheck

lim_n

lim_sd

raw_v_smoothed

correct

numeric, defautls to 40; value expressing the frequency (in Hz) to which PULSE
data should be interpolated. Can be set to @ (zero) or any value equal or greater
than 40 (the default). If set to zero, no interpolation is performed.

numeric, defaults to @. 2; the bandwidth for the Kernel Regression Smoother. If
equal to @ (zero) no smoothing is applied. Normally kept low (8.1 - @.3) so
that only very high frequency noise is removed, but can be pushed up all the
way to 1 or above (especially when the heartbeat rate is expected to be slow, as
is typical of oysters, but double check the resulting data). Type ?ksmooth for
additional info.

logical, defaults to TRUE; should pulse_doublecheck() be used? (it is rare, but
there are instances when it should be disabled).

numeric, defaults to 3; minimum number of peaks detected in each time window
for it to be considered a "keep".

numeric, defaults to @.75; maximum value for the sd of the time intervals be-
tween each peak detected for it to be considered a "keep"

logical, defaults to TRUE; indicates whether or not to also compute heart rates
before applying smoothing; this will increase the quality of the output but also
double the processing time.

logical, defaults to TRUE; if FALSE, data points with hz values likely double
the real value are flagged BUT NOT CORRECTED. If TRUE, hz (as well as
data, n, sd and ci) are corrected accordingly. Note that the correction is not
reversible!

discard_channels

keep_raw_data

subset

subset_seed

subset_reindex

character vectors, containing the names of channels to be discarded from the
analysis. discard_channels is forced to lowercase, but other than that, the
exact names must be provided. Discarding unused channels can greatly speed
the workflow!

logical, defaults to TRUE; If set to FALSE, $data is set to FALSE (i.e., raw data
is discarded), dramatically reducing the amount of disk space required to store
the final output (usually, by two orders of magnitude). HOWEVER, note that it
won’t be possible to use pulse_plot_raw() anymore!

numerical, defaults to @; the number of time windows to keep from the entire
dataset (or the number of entries to reject if set to a negative value); smaller
subsets make the entire processing quicker and facilitate the execution of trial
runs to optimize parameter selection before processing the entire dataset.

numerical, defaults to NULL; only used if subset is different from 0; subset_seed
controls the seed used when extracting a subset of the available data; if set to
NULL, a random seed is selected, resulting in rows being selected randomly; al-
ternativelly, the user can set a specific seed in order to always select the same
rows (important when the goal is to compare the impact of different parameter
combinations using the exact same data points).

logical, defaults to FALSE; only used if subset is different from @; after extract-
ing a subset of the available data, should rows be re-indexed (i.e., .$i made
fully sequential); re-indexed rows make using pulse_plot_raw() easier, but
row identity doesn’t match anymore with row identity before subsetting.

process_large

show_progress

PULSE

logical, defaults to FALSE; If set to FALSE, if the dataset used as input is large
(i.e., combined file size greater than 20 MB, which is equivalent to three files
each with a full hour of PULSE data), PULSE will not process the data and
instead suggest the use of PULSE_by_chunks(), which is designed to handle
large datasets; If set to TRUE, PULSE will proceed with the attempt to process
the dataset, but the system’s memory may become overloaded and R may never
finish the job.

logical, defaults to FALSE. If set to TRUE, progress messages will be provided.

max_dataset_size

Value

numeric, defaults to 21. Corresponds to the maximum combined size (in Mb)
that the dataset contained by the files in paths can be when process_large is
set to FALSE. If that is the case, data processing will be aborted with a message
explaining the remedies possible. This is a fail-safe to prevent PULSE from being
asked to process a dataset that is larger than the user’s machine can handle, a
situation that typically leads to a stall (R doesn’t fail, it just keeps trying without
any progress being made). A conservative value of 21 will allow only a little
more than 3 hours-worth of data to be processed (a PULSE csv file with 1 hour
of data typically takes up to 7 Mb). If the machine has a large amount of RAM
available, a higher value can be used. Alternatively, consider using the function
PULSE_by_chunks () instead.

A tibble with nrows = (number of channels) * (number of windows in pulse_data_split) and 13

columns:

¢ i, the order of each time window

» smoothed, logical flagging smoothed data
¢ id, PULSE channel IDs

¢ time, time at the center of each time window

e data, a list of tibbles with raw PULSE data for each combination of channel and window,
with columns time, val and peak (TRUE in rows corresponding to wave peaks)

¢ hz, heartbeat rate estimate (in Hz)

* n, number of wave peaks identified

* sd, standard deviation of the intervals between wave peaks

¢ ci, confidence interval (hz % ci)

* keep, logical indicating whether data points meet N and SD criteria

* d_r, ratio of consecutive asymmetric peaks

» d_f, logical flagging data points where heart beat frequency is likely double the real value

One experiment

The heartbeatr workflow must be applied to a single experiment each time. By experiment we
mean a collection of PULSE data where all the relevant parameters are invariant, including (but not

limited):

PULSE 7

* the version of the firmware installed in the PULSE device (multi-channel or one-channel)
* the names of all channels (including unused channels)

* the frequency at which data was captured

Note also that even if two PULSE systems have been used in the same scientific experiment, data
from each device must be processed independently, and only merged at the end. There’s no draw-
back in doing so, it just is important to understand that that’s how data must be processed by the
heartbeatr-package.

Normalizing and summarising data

Both pulse_normalize() and pulse_summarise() aren’tincluded in PULSE () because they aren’t
essential for the PULSE data processing pipeline and the choosing of values for their parameters
require an initial look at the data. However, it is very often crucial to normalize the heart rate esti-
mates produced so that comparisons across individuals can more reliably be made, and it also often
important to manage the amount of data points produced before running statistical analyses on the
data to avoid oversampling, meaning that users should consider running the output from PULSE ()
though both these functions before considering the data as fully processed and ready for subsequent
analysis. Check both functions for additional details on their role on the entire processing pipeline
(?pulse_normalize and ?pulse_summarise).

Additional details

Check the help files of the underlying functions to obtain additional details about each of the steps
implemented under PULSE (), namely:

* pulse_read() describes constraints to the type of files that can be read with the heartbeatr-package
and explains how time zones are handled.

* pulse_split() provides important advice on how to set window_width_secs and window_shift_secs,
what to expect when lower/higher values are used, and explains how easily to run the heartbeatr-package
with parallel computing.

* pulse_optimize() explains in detail how the optimization process (interpolation + smooth-
ing) behaves and how it impacts the performance of the analysis.

* pulse_heart() outlines the algorithm used to identify peaks in the heart beat wave data and
some of its limitations.

* pulse_doublecheck() explains the method used to detect situations when the algorithm’s
processing resulted in an heart beat frequency double the real value.

e pulse_choose_keep() selects the best estimates when raw_v_smoothed = TRUE and classi-
fies data points as keep or reject.

Also check

* pulse_normalize() for important info about individual variations on baseline heart rate.
* pulse_summarise() for important info about oversampling and strategies to handle that.

* PULSE_by_chunks() for processing large datasets.

8 PULSE_by_chunks

BPM

To convert to Beats Per Minute (bpm), simply multiply hz and ci by 60.

See Also

* approx() is used by pulse_interpolate() for the linear interpolation of PULSE data
* ksmooth() is used by pulse_smooth() for the kernel smoothing of PULSE data

e pulse_read(), pulse_split(), pulse_optimize(), pulse_heart(), pulse_doublecheck()
and pulse_choose_keep() are the functions used in the complete heartbeatr processing
workflow

* pulse_normalize() and pulse_summarise() are important post-processing functions

* pulse_plot() and pulse_plot_raw() can be used to inspect the processed data

Examples

Begin prepare data ----

paths <- pulse_example()

chn <- paste@("c"”, formatC(1:10, width = 2, flag = "0"))
End prepare data ----

Execute the entire PULSE data processing pipeline with only one call

PULSE(
paths,

discard_channels = chn[-8],
raw_v_smoothed = FALSE,
show_progress = FALSE

)

Equivalent to...

x <- pulse_read(paths)

multi <- x$multi

x$data <- x$datal,c("time"”, "c08")]

<- pulse_split(x)

<- pulse_optimize(x, raw_v_smoothed = FALSE, multi = multi)
<- pulse_heart(x)

<- pulse_doublecheck(x)

<- pulse_choose_keep(x)

X X X X X X

PULSE_by_chunks Process PULSE data file by file (STEPS 1-6)

PULSE_by_chunks 9

Description

This function runs PULSE () file by file, instead of attempting to read all files at once. This is required
when datasets are too large (more than 20-30 files), as otherwise the system may become stuck due
to the amount of data that needs to be kept in the memory. Because the results of processing data for
each hourly file in the dataset are saved to a job_folder, PULSE_by_chunks () has the added benefit
of allowing the entire job to be stopped and resumed, facilitating the advance in the processing even
if a crash occurs.

Usage

PULSE_by_chunks(
folder,
allow_dir_create = FALSE,
chunks = 2,
bind_data = TRUE,

window_width_secs = 30,
window_shift_secs = 60,
min_data_points = 0.8

interpolation_freq = 40,
bandwidth = 0.2,
doublecheck = TRUE,
lim_n = 3,

lim_sd = 0.75,
raw_v_smoothed = TRUE,
correct = TRUE,
discard_channels = NULL,
keep_raw_data = TRUE,
show_progress = TRUE

Arguments

folder the path to a folder where several PULSE files are stored

allow_dir_create
logical, defaults to FALSE. Only when set to TRUE does PULSE_by_chunks ()
actually do anything. This is to force the user to accept that a job_folder will be
created inside of the folder supplied - without this folder PULSE_by_chunks ()
cannot operate. It is STRONGLY advised to maintain a copy of the dataset being
processed to avoid any inadvertent data loss. By setting allow_dir_create to
TRUEthe user is taking responsibility for the management of their files.

chunks numeric, defaults to 2. Corresponds to the number of files processed at once
during each for cycle; higher numbers result in a quicker and more efficient
operation, but shouldn’t be set too high, as otherwise the system may become
overwhelmed once more (which is what PULSE_by_chunks() is designed to
avoid).

bind_data logical, defaults to TRUE. If set to TRUE, after processing all chunks, PULSE_by_chunks ()
will try to read all files in the job_folder and return a single unified tibble with
all data. Please be aware that there’s a possibility that if the dataset is very large,

10

PULSE_by_chunks

the machine may become overwhelmed and crash due to lack of memory (still,
all files stored in the job_folder will remain intact, and code may be written to
analyze data also in chunks). If set to FALSE, PULSE_by_chunks() will return
nothing after completing the processing of all files in the dataset, and the user
must instead manually handle the reading and collating of all processed data in
the job_folder.

window_width_secs

numeric, in seconds, defaults to 30; the width of the time windows over which
heart rate frequency will be computed.

window_shift_secs

min_data_points

numeric, in seconds, defaults to 60; by how much each subsequent window is
shifted from the preceding one.

numeric, defaults to 0. 8; decimal from O to 1, used as a threshold to discard
incomplete windows where data is missing (e.g., if the sampling frequency is
20 and window_width_secs = 30, each window should include 600 data points,
and soif min_data_points = 0.8, windows with less than 600 * 0.8 = 480 data
points will be rejected).

interpolation_freq

bandwidth

doublecheck

lim_n

lim_sd

raw_v_smoothed

correct

numeric, defautls to 40; value expressing the frequency (in Hz) to which PULSE
data should be interpolated. Can be set to @ (zero) or any value equal or greater
than 40 (the default). If set to zero, no interpolation is performed.

numeric, defaults to @. 2; the bandwidth for the Kernel Regression Smoother. If
equal to @ (zero) no smoothing is applied. Normally kept low (0.1 - @.3) so
that only very high frequency noise is removed, but can be pushed up all the
way to 1 or above (especially when the heartbeat rate is expected to be slow, as
is typical of oysters, but double check the resulting data). Type ?ksmooth for
additional info.

logical, defaults to TRUE; should pulse_doublecheck() be used? (it is rare, but
there are instances when it should be disabled).

numeric, defaults to 3; minimum number of peaks detected in each time window
for it to be considered a "keep".

numeric, defaults to 0.75; maximum value for the sd of the time intervals be-
tween each peak detected for it to be considered a "keep"

logical, defaults to TRUE; indicates whether or not to also compute heart rates
before applying smoothing; this will increase the quality of the output but also
double the processing time.

logical, defaults to TRUE; if FALSE, data points with hz values likely double
the real value are flagged BUT NOT CORRECTED. If TRUE, hz (as well as
data, n, sd and ci) are corrected accordingly. Note that the correction is not
reversible!

discard_channels

character vectors, containing the names of channels to be discarded from the
analysis. discard_channels is forced to lowercase, but other than that, the
exact names must be provided. Discarding unused channels can greatly speed
the workflow!

pulse_choose_keep 11

keep_raw_data logical, defaults to TRUE; If set to FALSE, $data is set to FALSE (i.e., raw data

is discarded), dramatically reducing the amount of disk space required to store
the final output (usually, by two orders of magnitude). HOWEVER, note that it
won’t be possible to use pulse_plot_raw() anymore!

show_progress logical, defaults to FALSE. If set to TRUE, progress messages will be provided.

Value

A tibble with nrows = (number of channels) * (number of windows in pulse_data_split) and 13
columns:

See Also

i, the order of each time window

smoothed, logical flagging smoothed data
id, PULSE channel IDs

time, time at the center of each time window

data, a list of tibbles with raw PULSE data for each combination of channel and window,
with columns time, val and peak (TRUE in rows corresponding to wave peaks)

hz, heartbeat rate estimate (in Hz)

n, number of wave peaks identified

sd, standard deviation of the intervals between wave peaks

ci, confidence interval (hz * ci)

keep, logical indicating whether data points meet N and SD criteria
d_r, ratio of consecutive asymmetric peaks

d_f, logical flagging data points where heart beat frequency is likely double the real value

PULSE () for all the relevant information about the the processing of PULSE data

Examples

#i#

pulse_

choose_keep (STEP 6) Choose the best heart beat frequency estimate from among
two estimates derived from raw and smoothed data

12 pulse_choose_keep

Description

e step 1—pulse_read()

e step 2-—pulse_split()

e step 3-pulse_optimize()

e step 4 —pulse_heart()

e step 5—pulse_doublecheck()

e —>>step 6 — pulse_choose_keep() <<-
When running pulse_optimize() or PULSE() with raw_v_smoothed = TRUE, two estimates are
generated for each data point, and pulse_choose_keep is used to automatically select the best one
(based on N and SD levels set by the user). NOTE: if supplied with input data generated using
raw_v_smoothed = FALSE, pulse_choose_keep outputs the same data, unchanged.

Usage

pulse_choose_keep(heart_rates, lim_n = 3, lim_sd = 0.75)

Arguments
heart_rates the output from pulse_heart()
lim_n numeric, defaults to 3; minimum number of peaks detected in each time window
for it to be considered a "keep".
lim_sd numeric, defaults to @.75; maximum value for the sd of the time intervals be-
tween each peak detected for it to be considered a "keep"”
Value

A tibble with the same structure as the input, but now with only one estimate for each combination
of id and time (the one that was deemed better).

See Also

e pulse_read(), pulse_split(), pulse_optimize(), pulse_heart() and pulse_doublecheck()
are the other functions needed for the complete PULSE processing workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data

pulse_data_sub$data <- pulse_data_sub$datal,1:2]

pulse_data_split <- pulse_split(pulse_data_sub)

pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
heart_rates <- pulse_heart(pulse_data_split)

End prepare data ----

nrow(heart_rates)
heart_rates <- pulse_choose_keep(heart_rates)
nrow(heart_rates) # halved

pulse_data 13

pulse_data PULSE multi-channel example data

Description

A subset of data from an experiment monitoring the heartbeat of four Mytilus mussels

Usage

pulse_data

Format
A list with four elements:

* $data, a tibble with 20,094 rows and 11 columns - one column with timestamps (named time)
and several columns of numeric data (the voltage readings from each channel of the PULSE
system; all channels with unique names)

e $multi, a single logical value indicating if the data was generated using a multi-channel or
single-channel PULSE system

* $vrsn, a single numeric value representing the firmware version of the PULSE system that
generated the data

* $freq, a single integer value representing the sampling frequency used (in Hz)

pulse_doublecheck (STEP 5) Fix heart rate frequencies double the real value

Description

* step 1-—pulse_read()
e step 2-—pulse_split()
* step 3—pulse_optimize()
e step 4 —pulse_heart()
e —>>step 5 — pulse_doublecheck() <<-
* step 6 —pulse_choose_keep()
Flag (and correct) data points where it is likely that the heart rate frequency computed corresponds

to double the actual heart rate frequency due to the algorithm having identified two peaks per heart
beat

Usage

pulse_doublecheck(heart_rates, flag = 0.9, correct = TRUE)

14 pulse_doublecheck

Arguments
heart_rates the output from pulse_heart()
flag numerical, decimal from O to 1, defaults to 0. 9; values of d_r above this number
will be flagged as instances where the algorithm resulted in double the real heart
rate. Values above 1lare meaningless (zero data points will be flagged), and
values below ~@.66 are too lax (many data points will be flagged when they
shouldn’t).
correct logical, defaults to TRUE; if FALSE, data points with hz values likely double
the real value are flagged BUT NOT CORRECTED. If TRUE, hz (as well as
data, n, sd and ci) are corrected accordingly. Note that the correction is not
reversible!
Value

A tibble similar to the one used as input, now augmented with two new columns: d_r and d_f. Val-
ues of d_r (ratio) close to 1 are indicative that the value for hz determined by the algorithm should
be halved. If correct was set to TRUE, d_f flags data points where hz HAS BEEN HALVED. If
correct was set to FALSE, then d_f flags data points where hz SHOULD BE HALVED.

Heart beat frequency estimation

For many invertebrates, the circulatory system includes more than one contractile chamber, meaning
that there are two consecutive movements that may or may not be detected by the PULSE system’s
IR sensors. Furthermore, when the sensor is attached to the shell of the animal, it remains at a fixed
position even as the soft body tissues move below that. As a result, even if one takes explicit care
to position the sensor in such a way that only one wave peak is detected for each heart beat cycle,
at some point the animal may move and the sensor’s field of view may come to encompass both
contractile chambers. When that occurs, the shape of the signal detected will include two peaks
per heart beat cycle, the relative sizes of which may vary considerably. To be clear, there’s nothing
wrong with such a signal. However, it creates a problem: the algorithm detects peaks, and therefore,
if two peaks are detected for each heart beat, the resulting estimate for the heart beat frequency will
show a value twice as much as the real value.

Detection method

While it is often easy to discern if a PULSE data point has two peaks per heart beat upon visual
inspection, to do so automatically is much harder. The strategy employed here relies on analyzing
the intervals between consecutive peaks and looking for a regular alternation between longer and
shorter intervals, as well as higher and lower peak signal values. If intervals are consistently shorter,
then longer, then shorter again, we can assume that the distribution of interval times is bimodal, and
that there are always two peaks more closer together separated by a longer interval - a classical two-
peaks-per-heart-beat situation. For example, let’s say 24 peaks are detected. We can compute the
time span between each peak, which will correspond to 23 intervals (measured in seconds). Then,
intervals can be classified as being longer or shorter than the preceding interval. Lastly, we divide
the number of longer-than-previous intervals by the total number of intervals, deriving the ratio of
switching intervals. Similarly, if peak signal values are consistently higher, then lower, then higher
again, we can also assume that two different heart movements belonging to the same heartbeat are
represented in the data, and a similar algorithm can be followed. The closer the ratio is to 1, the

pulse_example 15

more certain we are that we are facing a situation where the algorithm will result in a heart beat
frequency twice the real value. Because the choice of a threshold to flag data points as needing to
be halved or not is arbritary, both the flagging and the ratio are provided in the output, thus enabling
a reassessment of the resulting classification.

See Also

* pulse_heart() generates the tibble that is used as input.

e pulse_read(), pulse_split(), pulse_optimize(), pulse_heart() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once, including the identification of possible heart rate doublings

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data

pulse_data_sub$data <- pulse_data_sub$datal,1:3]

pulse_data_split <- pulse_split(pulse_data_sub)

pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
heart_rates <- pulse_heart(pulse_data_split)

End prepare data ----

Correct heartbeat frequency estimates
pulse_doublecheck(heart_rates)

pulse_example Get paths to pulse example files

Description
heartbeatr-package comes bundled with several sample files in its inst/extdata directory. This
function make them easy to access

Usage

pulse_example(pattern = NULL)

Arguments
pattern Pattern to select one or more example files. Pattern is vectorized, so more than
one value can be supplied. If NULL, all example files are listed.
Value

The full path to one or more example files, or the filenames of all example files available.

16 pulse_find_peaks_all_channels

See Also

* pulse_read() can be used to read data from the example files

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once, and it can be called to read and process the example files

Examples

Get the paths to all example files
pulse_example()

pulse_find_peaks_all_channels
Determine the heartbeat rate in all channels of a PULSE split window

Description

Take data from PULSE data window and run pulse_find_peaks_one_channel in all channels.

Usage

pulse_find_peaks_all_channels(split_window)

Arguments

split_window one element of the pulse_data_split list() (which is the output from pulse_split()).

Value

A tibble with up to 10 rows (one for each channel) and 7 columns:

¢ id, PULSE channel IDs
* time, time at the center of split_window_one_channel$time

e data, a list of tibbles with raw PULSE data for each combination of channel and window,
with columns time, val and peak (TRUE when data points correspond to wave peaks)

¢ hz, heartbeat rate estimate (in Hz)
* n, number of wave peaks identified
* sd, standard deviation of the intervals between wave peaks (normalized)

* ci, confidence interval (hz * ci)

BPM

To convert to Beats Per Minute, simply multiply hz and ci by 60.

pulse_find_peaks_one_channel 17

See Also

e pulse_find_peaks_all_channels() runs pulse_find_peaks_one_channel() onall PULSE
channels

e pulse_read(), pulse_split(), pulse_optimize(), pulse_heart() and pulse_choose_keep()
are the functions needed for the complete PULSE processing workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data

pulse_data_sub$data <- pulse_data_sub$datal,1:5]

pulse_data_split <- pulse_split(pulse_data_sub)

pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
split_window <- pulse_data_split$datal[1]]

End prepare data ----

Determine heartbeat rates in all channels in one time window
pulse_find_peaks_all_channels(split_window)

pulse_find_peaks_one_channel
Determine the heart beat frequency in one PULSE channel

Description

Take data from one PULSE channel and identify the heartbeat wave peaks using an algorithm that
searches for maxima across multiple scales.
Usage

pulse_find_peaks_one_channel (split_window_one_channel)

Arguments

split_window_one_channel
a tibble with PULSE data for only one channel with columns $time and $val

Details

function builds upon code from https://github.com/ig248/pyampd

18 pulse_find_peaks_one_channel

Value
A one-row tibble with 8 columns:

* time, time at the center of split_window_one_channel$time
* t_pks, time stamps of each wave peak identified

¢ hz, heartbeat rate estimate (in Hz)

* n, number of wave peaks identified

* sd, standard deviation of the intervals between wave peaks

¢ ci, confidence interval (hz * ci)

Standard Deviation

The sd computed refers to the spread of the intervals between each peak identified. It is a measure
of the quality of the raw data and the ability of the algorithm to identify a real heart beat. The lower
the sd, the more regular are the intervals between peaks, and the more likely that the algorithm did
find a real signal. Conversely, higher sds indicate that the peaks are found at irregular intervals,
and is an indication of poor quality data. In detail, sd is computed by: 1) taking the timestamps
for each peak identified [t_pks], 2) computing the intervals between each pair of consecutive peaks
[as.numeric(diff(t_pks))], and 3) computing sd [sd(intervals)].

BPM

To convert to Beats Per Minute, simply multiply hz and ci by 60.

See Also

e pulse_find_peaks_all_channels() runs pulse_find_peaks_one_channel() onall PULSE
channels

* pulse_read(), pulse_split(), pulse_optimize(), pulse_heart(), pulse_doublecheck()
and pulse_choose_keep() are the functions needed for the complete PULSE processing
workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data

pulse_data_sub$data <- pulse_data_sub$datal,1:5]

pulse_data_split <- pulse_split(pulse_data_sub)

pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
split_window <- pulse_data_split$datal[1]]

split_window_one_channel <- split_window[,1:2]
colnames(split_window_one_channel) <- c("time”, "val")

End prepare data ----

Determine heartbeat rates in one channel in one time window
pulse_find_peaks_one_channel(split_window_one_channel)

pulse_halve 19

pulse_halve Halves heart beat frequencies computed by pulse_heart

Description

Halves the heart beat frequency computed by pulse_heart when double peaks have been detected
by pulse_correct. Note that the correction cannot be reverted (if just testing, store as a different
variable). The associated stats are recalculated. This function is used by pulse_correct, it is not
immediately usable as standalone.

Usage
pulse_halve(hr)

Arguments
hr a tibble as the one used as input to pulse_doublecheck(), but with the addi-
tional column d_f, which flags rows where heart beat frequencies need to be
halved. All rows supplied are halved, so input should be a filtered version of the
full dataset.
Value

A tibble with as many rows as the one provided as input, but with data, hz, n, sd, and ci adjusted
accordingly.

See Also

¢ pulse_doublecheck() is the function within the heartbeatr-package that uses pulse_halve

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once, including the identification and correction of possible heart rate doublings

pulse_heart (STEP 4) Determine the heartbeat rate in all channels of a split PULSE
object

Description

e step 1-pulse_read()

e step 2-—pulse_split()

e step 3-pulse_optimize()

e —>>step 4 — pulse_heart() <<-
e step 5—pulse_doublecheck()

20

pulse_heart

step 6 —pulse_choose_keep()

For each combination of channel and time window, determine the heartbeat rate automatically.

pulse_heart() takes the output from a call to pulse_optimize() (or pulse_split() if opti-
mization is skipped, but that is highly discouraged) and employs an algorithm optimized for the
identification of wave peaks in noisy data to determine the heart beat frequency in all channels of
the PULSE dataset.

Usage

pulse_heart(pulse_data_split, msg = TRUE, show_progress = FALSE)

Arguments

pulse_data_split

msg

the output from a call to pulse_split()

logical, defaults to TRUE; should non-crucial messages (but not errors) be shown
(mostly for use from within the wrapper function PULSE(), where it is set to
FALSE to avoid the repetition of identical messages)

show_progress logical, defaults to FALSE. If set to TRUE, progress messages will be provided.

Value

A tibble with nrows = (number of channels) * (number of windows in pulse_data_split) and 10
columns:

BPM

i, index of each time window’s order

smoothed, whether the data has been smoothed with pulse_smooth()
id, PULSE channel IDs

time, time at the center of each time window

data, a list of tibbles with raw PULSE data for each combination of channel and window,
with columns time, val and peak (TRUE in rows corresponding to wave peaks)

hz, heartbeat rate estimate (in Hz)

n, number of wave peaks identified

sd, standard deviation of the intervals between wave peaks
ci, confidence interval (hz + ci)

keep, whether n and sd are within the target thresholds

To convert to Beats Per Minute, simply multiply hz and ci by 60.

pulse_interpolate 21

See Also

e pulse_find_peaks_all_channels() runs pulse_find_peaks_one_channel() onall PULSE
channels

e pulse_read(), pulse_split(), pulse_optimize(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

* pulse_summarise() can be used to reduce the number of data points returned

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data

pulse_data_sub$data <- pulse_data_sub$datal,1:3]

pulse_data_split <- pulse_split(pulse_data_sub)

pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
End prepare data ----

Determine heartbeat rates in all channels in all time window
pulse_heart(pulse_data_split)

pulse_interpolate Increase the number of data points in PULSE data through interpola-
tion

Description

The performance of the algorithm employed in the downstream function pulse_heart() for the
detection of heart beat wave crests depends significantly on there being a sufficient number of data
points around each crest. pulse_interpolate() reshapes the data non-destructively and improves
the likelihood of pulse_heart() successfully estimating the inherent heartbeat rates.

* INTERPOLATION is highly recommended because tests on real data have shown that a fre-
quency of at least 40 Hz is crucial to ensure wave crests can be discerned even when the
underlying heartbeat rate is high (i.e., at rates above 2-3 Hz). Since the PULSE multi-channel
system is not designed to capture data at such high rates (partially because it would generate
files unnecessarily large), pulse_interpolate() is used instead to artificially increase the
temporal resolution of the data by linearly interpolating to the target frequency. It is impor-
tant to note that this process DOES NOT ALTER the shape of the heart beat wave, it just
introduces intermediary data points. Also, the only downside to using very high values for
interpolation_freq is the proportional increase in computing time and size of the outputs
together with minimal improvements in the performance of pulse_heart() - but no artefacts
are expected.

Usage

pulse_interpolate(split_window, interpolation_freq = 40, multi)

22

pulse_normalize

Arguments

split_window one element of the pulse_data_split list() (which is the output from pulse_split()).

interpolation_freq

numeric, defautls to 40; value expressing the frequency (in Hz) to which PULSE
data should be interpolated. Can be set to @ (zero) or any value equal or greater
than 40 (the default). If set to zero, no interpolation is performed.

multi logical; was the data generated by a multi-channel system (TRUE) or a one-

Value

channel system (FALSE)?

The same PULSE tibble supplied in split_window, but now with data interpolated to interpolation_freq
(i.e., with more data points)

See Also

approx() is used for the linear interpolation of PULSE data

pulse_optimize() is a wrapper function that executes pulse_interpolate and pulse_smooth()
sequentially

pulse_read(), pulse_split(), pulse_heart(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data
pulse_data_sub$data <- pulse_data_sub$datal,1:5]
pulse_data_split <- pulse_split(pulse_data_sub)
End prepare data ----

Interpolate data to 40 Hz
pulse_interpolate(pulse_data_split$datal[[1]], 40, multi = pulse_data$multi)

pulse_

normalize Normalize PULSE heartbeat rate estimates

Description

Take the output from PULSE() and compute the normalized heartbeat rates. The normalization of
heartbeat rates is achieved by calculating, for each individual (i.e., PULSE channel), the average
heartbeat rate during a reference baseline period (ideally measured during acclimation, before the
stress-inducing treatment is initiated).

pulse_normalize 23

Usage

pulse_normalize(
heart_rates,
FUN = mean,
t@ = NULL,
span_mins = 10,
overwrite = FALSE

Arguments

heart_rates the output from PULSE (), pulse_heart (), pulse_doublecheck() or pulse_choose_keep.

FUN the function to be applied to normalize the data within the baseline period (de-
faults to mean; median may be more suited in some situations; any other func-
tion that returns a single numeric value is technically acceptable).

t0 either NULL (default), a lubridate::POSIXct object or a character string that can
be directly converted to a lubridate::POSIXct object. Represents the beginning
of the period to be used to establish the baseline heart beat frequency (same
value is used for all channels). If set to NULL, the baseline period is set to the
earliest timestamp available.

span_mins numeric, defaults to 10; number of minutes since t0, indicating the width of the
baseline period (baseline from t0 to t@ + span_mins mins)

overwrite logical, defaults to FALSE; should the normalized values be stored in a differ-
ent column (hz_normif overwrite = FALSE; RECOMMENDED) or replace the
data in the column hz (overwrite = TRUE; WARNING: the original hz values
cannot be recovered).

Value

The same tibble provided as input, with an additional column hz_norm containing the normalized
heart beat frequencies (overwrite = FALSE) or with the same number of columns and normalized
data saved to the column hz (overwrite = TRUE).

Details

Normalizing heartbeat rates is important because even individuals from the same species, the same
age cohort and subjected to the same treatment will have different basal heart beat frequencies.
After normalizing, these differences are minimized, and the analysis can focus on the change of
hear beat frequency relative to a reference period (the baseline period chosen) rather than on the
absolute values of heart beat frequency - which can be misleading.

The period chosen for the baseline doesn’t need to be long - it’s much more important that conditions
(and hopefully heart beat frequencies) are as stable and least stressful as possible during that period.

After normalization, heart beat frequencies during the baseline period will, by definition, average
to 1. Elsewhere, normalized heart beat frequencies represent ratios relative to the baseline: 2 rep-
resents a heart beat frequency double the basal frequency, while 0.5 indicates half of the basal
frequency. This means that two individuals may experience a doubling of heart beat frequency
throughout an experiment even if their absolute heart beat frequencies are markedly different from

24 pulse_normalize

each other (e.g., individual 1 with hz = 0.6 at t0 and hz = 1.2 at t1, and individual 2 with hz = 0.8 at
t0 and hz = 1.6 at t1, will both show hz_norm = 1 at t0 and hz_norm = 2 at t1).

Different baseline periods for each channel

pulse_normalize only allows setting a single baseline period. If different periods are needed for
different channels or groups of channels, generate two or more subsets of heart_rates containing
heart_rates$id that share the same baseline periods, normalize each independently and bind all
data together at the end (see the examples section below).

See Also

e pulse_heart(), pulse_doublecheck() and pulse_choose_keep() are the functions that
generate the input for pulse_normalize

* pulse_plot() can be called to visualize the output from pulse_normalize

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once, and its output can also be passed on to pulse_normalize

Examples

Begin prepare data ----
pulse_data_sub <- pulse_data
pulse_data_sub$data <- pulse_data_sub$datal,1:5]
pulse_data_split <- pulse_split(

pulse_data_sub,

window_width_secs = 30,

window_shift_secs = 60,

min_data_points = 0.8)
pulse_data_split <- pulse_optimize(pulse_data_split, multi = pulse_data$multi)
heart_rates <- pulse_heart(pulse_data_split)
heart_rates <- pulse_doublecheck(heart_rates)
End prepare data ----

Normalize data using the same period as baseline for all channels
pulse_normalize(heart_rates)

Using a different (complex) function
pulse_normalize(heart_rates, FUN = function(x) quantile(x, 0.4))

Apply different baseline periods to two groups of IDs
group_1 <- c("limpet_1", "limpet_2")
rbind(
group_1
pulse_normalize(heart_rates[(heart_rates$id %in% group_1),], span_mins = 10),
all other IDs
pulse_normalize(heart_rates[!(heart_rates$id %in% group_1), 1, span_mins = 30)

)

pulse_optimize 25

pulse_optimize (STEP 3) Optimize PULSE data through interpolation and smoothing

Description

step 1-pulse_read()

step 2-—pulse_split()

—>> step 3 — pulse_optimize() <<-
step 4 —pulse_heart()

step 5—pulse_doublecheck()
step 6 —pulse_choose_keep()

IMPORTANT NOTE: pulse_optimize() can be skipped, but that is highly discouraged.

The performance of the algorithm employed in the downstream function pulse_heart() for the
detection of heartbeat wave crests depends significantly on (i) there being a sufficient number of
data points around each crest and (ii) the data not being too noisy. pulse_optimize() uses first
pulse_interpolate() and then pulse_smooth() to reshape the data and improve the likelihood
of pulse_heart() successfully estimating the inherent heartbeat rates.

Usage

INTERPOLATION is highly recommended because tests on real data have shown that a fre-
quency of at least 40 Hz is crucial to ensure wave crests can be discerned even when the
underlying heartbeat rate is high (i.e., at rates above 2-3 Hz). Since the PULSE multi-channel
system is not designed to capture data at such high rates (partially because it would generate
files unnecessarily large), pulse_interpolate() is used instead to artificially increase the
temporal resolution of the data by linearly interpolating to the target frequency. It is impor-
tant to note that this process DOES NOT ALTER the shape of the heart beat wave, it just
introduces intermediary data points. Also, the only downside to using very high values for
interpolation_freq is the proportional increase in computing time and size of the outputs
together with minimal improvements in the performance of pulse_heart() - but no artefacts
are expected.

SMOOTHING should be experimented with when pulse_heart () produces too many heartbeat
rate estimates that are clearly incorrect. In such situations, pulse_smooth() applies a smooth-
ing filter (normal Kernel Regression Smoother) to the data to smooth out high-frequency noise
and render a more sinusoidal wave, which is easier to handle. Unlike interpolation_freq,
users should exercise caution when setting bandwidth and generally opt for lower values, as
there’s a threshold to bandwidth values above which the resulting smoothed pulse data be-
comes completely unrelated to the original data, and the subsequent heartbeat rates computed
with pulse_heart() may be wrong. Always double-check the data after applying a stronger
smoothing. Nonetheless, note that if applied with the default bandwidth, smoothing incurs
no penalty and hardly changes the data - so it isn’t worth going out of the way to not apply
smoothing.

pulse_optimize(
pulse_data_split,

26

pulse_optimize

interpolation_freq = 40,
bandwidth = 0.2,
raw_v_smoothed = FALSE,
multi

Arguments

pulse_data_split
the output from a call to pulse_split()

interpolation_freq
numeric, defautls to 40; value expressing the frequency (in Hz) to which PULSE
data should be interpolated. Can be set to @ (zero) or any value equal or greater
than 40 (the default). If set to zero, no interpolation is performed.

bandwidth numeric, defaults to @. 2; the bandwidth for the Kernel Regression Smoother. If
equal to @ (zero) no smoothing is applied. Normally kept low (0.1 - @.3) so
that only very high frequency noise is removed, but can be pushed up all the
way to 1 or above (especially when the heartbeat rate is expected to be slow, as
is typical of oysters, but double check the resulting data). Type ?ksmooth for
additional info.

raw_v_smoothed logical, defaults to FALSE; if set to FALSE, the output includes only one list ob-
tained after applying interpolation and smoothing according to the values set. If
set to TRUE, a list with two lists is returned, one after applying only interpolation
(i.e., "raw"), and the other after applying both interpolation and smoothing (i.e,
"smoothed").

multi logical; was the data generated by a multi-channel system (TRUE) or a one-
channel system (FALSE)?

Value

The same structure as the input data, which is a tibble with three columns, but now with the values
on column $smoothed switched to TRUE if smoothing was applied and the contents of column
$data modified in accordance with the parameters called. If raw_v_smoothed is FALSE, the tibble
returned will have the same number of rows as the input tibble. If raw_v_smoothed is TRUE, the
tibble returned will have twice the number of rows as the input tibble, with half not smoothed
(i.e., only interpolation applied), the other half smoothed (i.e., interpolation and smoothing applied)
and the order indexes in $i duplicated. Downstream functions will process both types of output
automatically.

Raw v smoothed

When raw_v_smoothed is set to TRUE, two heart rate estimates are produced for each data point
- one based on the raw data and another after applying smoothing. The cost is an increase in
processing time. The benefit is an improvement in the ability to estimate heart rates when the
heart is beating faster, as in those cases smoothing the data may become counterproductive. When
raw_v_smoothed = TRUE, pulse_choose_keep() will decide which of the estimates to retain for
each data point (based on user-defined parameters).

pulse_plot 27

See Also

approx() is used by pulse_interpolate() for the linear interpolation of PULSE data
ksmooth() is used by pulse_smooth() for the kernel smoothing of PULSE data

pulse_optimize() is a wrapper function that executes pulse_interpolate() and pulse_smooth()
sequentially

pulse_read(), pulse_split(), pulse_heart(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data
pulse_data_sub$data <- pulse_data_sub$datal,1:5]
pulse_data_split <- pulse_split(pulse_data_sub)
End prepare data ----

Optimize data by interpolating to 40 Hz and applying a slight smoothing
pulse_optimize(pulse_data_split, 40, 0.2, multi = pulse_data$multi)

pulse_

plot Plot processed PULSE data

Description

A shortcut function based on ggplot2 to facilitate the quick inspection of the results of the analysis
(with the option to separate channels or not).

Usage

pulse_plot(
heart_rates,
ID = NULL,
normalized = FALSE,
smooth = TRUE,
points = TRUE,
facets = TRUE,

bpm = FALSE
)
Arguments
heart_rates the output from PULSE() (or pulse_heart() and any of the downstream func-

tions).

28 pulse_plot

ID character string naming a single target channel id (must match exactly); defaults
to NULL, which results in all IDs being plotted

normalized logical, defaults to FALSE; whether to plot hz_norm (TRUE) or hz (FALSE).

smooth logical, defaults to TRUE; whether to plot a 1loess smoothing curve (TRUE) or a
line (FALSE).

points logical, defaults to TRUE; whether to overlay data points.

facets logical, defaults to TRUE; whether to separate channels in facets (TRUE) or to plot
all data together (FALSE)

bpm logical, defaults to FALSE; whether to plot heartbeat frequency using Hz (FALSE)

or Beats Per Minute (TRUE); forced to FALSE if normalized is set to TRUE

Details

This function is NOT meant for high-level displaying of PULSE data - it’s simply a quick shortcut
to facilitate data inspection.

When inspecting the plot with smooth = TRUE, assess if the 1loess confidence intervals are too wide
for any given channel, which is indicative of data with high variability (not ideal).

If using smooth = FALSE, then look for the width of the confidence interval for each data point.

Value

A ggplot object that can be augmented using ggplot2 syntax or plotted right away

See Also

* use pulse_plot_raw() to quickly plot the raw PULSE data for a given channel/split window

* PULSE() (or pulse_heart() and any of the downstream functions) generates the input for
pulse_plot

e call pulse_normalize() to anchor heart beat data from each channel to a reference period
during the experiment

Examples

Begin prepare data ----
paths <- pulse_example()
chn <- paste@("c"”, formatC(1:10, width = 2, flag = "0"))
heart_rates <- PULSE(
paths,
discard_channels = chn[-9],
raw_v_smoothed = FALSE,
show_progress = FALSE)
End prepare data ----

Default
pulse_plot(heart_rates)

A single ID
pulse_plot(heart_rates, ID = "c@9")

pulse_plot_one 29

Without facets, the different basal heartbeat rates become evident in #' non-normalized data
pulse_plot(heart_rates, facets = FALSE)

Without facets, normalized data always lines up (around 1) during the #' baseline period
pulse_plot(

pulse_normalize(heart_rates),

normalized = TRUE,

facets = FALSE)

The plot can be modified using ggplot2 syntax
pulse_plot(heart_rates) + ggplot2::theme_dark()

Data can also be visualized using BPM (Beats Per Minute)
pulse_plot(heart_rates, bpm = TRUE)

If inspecting the heart rate estimates for a single ID and suppressing the
LOESS smoothing, the confidence interval of each estimate is also shown
pulse_plot(heart_rates, ID = "c@9", smooth = FALSE)

pulse_plot_one heartbeatr utility function

Description

Basic function to quickly plot data from one data point only

Usage

pulse_plot_one(data)

Arguments

data PULSE tibble (tow columns: $time and $val)

Value

A ggplot object that can be augmented using ggplot2 syntax or plotted right away

Examples

Begin prepare data ----
path <- pulse_example()
chn <- paste@("c"”, formatC(1:10, width = 2, flag = "0"))
heart_rates <- PULSE(
path,
discard_channels = chn[-8],
raw_v_smoothed = FALSE,
show_progress = FALSE)
End prepare data ----

30

pulse_plot_raw

pulse_plot_one(heart_rates$datal[1]1])

pulse_plot_raw

Plot raw PULSE data

Description

A shortcut function based on ggplot2 to facilitate the quick inspection of the raw data underly-
ing the analysis (with the peaks detected signaled with red dots). Useful to visually inspect the
performance of the algorithm.

Usage

pulse_plot_raw(heart_rates, ID, target_time = NULL, range = 0, target_i = NULL)

Arguments

heart_rates

ID

target_time

range

target_i

Details

the output from PULSE() (or pulse_heart() and any of the downstream func-
tions).

character string naming a single target channel id (must match exactly); defaults
to NULL, which results in all IDs being plotted

a target time expressed as POSIX time or a string that can be converted directly
by as.POSIXct(); target_i will be computed as the window closest to the
target_time

numeric, defaults to @ (only target_i will be plotted); value indicating how
many more windows to plot (centered around the target window, i.e., if target_i
=5 and range = 2, windows 3 to 7 will be plotted, with window 5 at the center)

numeric; value pointing to the index of the target window (which can be found
in the column i of heart_rates)

This function is NOT meant for high-level displaying of the data - it’s simply a quick shortcut to
facilitate data inspection.

When inspecting the plot, assess if red dots top all heartbeats and no more than that. Difficult
datasets may result in true heartbeats being missed (false negatives) or non-heartbeats (noise) be-
ing erroneously detected (false positives). Note that the wider the time window (controlled by the
window_width_secs parameter in pulse_split()) and the higher the heartbeat rate, the less criti-
cal are a few false positives or negatives (over a 10 secs window, missing 1 peak in 10 results in hz
to drop by 10% (from 1 to 0.9), while over a 30 secs window, missing 1 peak in 30 results in a drop
of 3.33% (from 1 to 0.967), and missing 1 peak in 60 results in a drop of just 1.7%.

Value

A ggplot object that can be augmented using ggplot2 syntax or plotted right away

pulse_read 31

See Also

* use pulse_plot() to plot processed PULSE data for a several channels

* PULSE() (or pulse_heart() and any of the downstream functions) generates the input for
pulse_plot_raw

e call pulse_normalize() to anchor heart beat data from each channel to a reference period
during the experiment

Examples

Begin prepare data ----
paths <- pulse_example()
chn <- paste@(”c"”, formatC(1:10, width = 2, flag = "0"))
heart_rates <- PULSE(
paths,
discard_channels = chn[-8],
raw_v_smoothed = FALSE,
show_progress = FALSE)
End prepare data ----

Single window (in both cases, the 5th window)

using a target date and time
pulse_plot_raw(heart_rates, "c@8", "2024-10-01 10:56")
using the index

pulse_plot_raw(heart_rates, "c08", target_i = 5)

Multiple windows (less detail, but more context)
pulse_plot_raw(heart_rates, "c@8", "2024-10-01 10:56", 2)

The plot can be modified using ggplot2 syntax
pulse_plot_raw(heart_rates, "c08", target_i = 5) + ggplot2::theme_classic()

pulse_read (STEP 1) Read data from all PULSE files in the target folder

Description

e —>>step 1 — pulse_read() <<-
* step 2—pulse_split()

e step 3-pulse_optimize()

e step 4 —pulse_heart()

e step 5—pulse_doublecheck()
e step 6 —pulse_choose_keep()

Importing data from PULSE ' .csv' files is the first step of the analysis of PULSE data.

pulse_read() checks that the paths provided by the user conform to certain expectations and then
reads the data from all files and merges into a single tibble. Only data from the same experiment
should be read at the same time (i.e., with the same channel names, collected with the same sampling

32 pulse_read

frequency, and produced using a PULSE multi-channel or a PULSE one-channel system running the
same firmware version throughout the experiment). To put it differently, one call to pulse_read()
can only read files where the header is absolutely invariant, and only the data portion of the files
differs. The output of pulse_read() can be directly passed on to pulse_split().

Usage

pulse_read(paths, msg = TRUE)

Arguments
paths character vectors, containing file paths to CSV files produced by a PULSE sys-
tem during a single experiment.
msg logical, defaults to TRUE; should non-crucial messages (but not errors) be shown
(mostly for use from within the wrapper function PULSE(), where it is set to
FALSE to avoid the repetition of identical messages)
Value

A list with four elements:

* $data, tibble containing all data from all PULSE files

e $multi, logical indicating if the data is from a multi-channel system (TRUE) or from a one-
channel system (FALSE)

* $vrsn, numeric value representing the version number of the PULSE system where the data
was generated

* $freq, numeric value representing the sampling frequency used (in Hz)

Time zones

PULSE systems ALWAYS record data using UTC +0. This is intentional! If data were to be
recorded using local time zones, issues with daylight saving time, leap seconds, etc. could spoil the
dataset. Worse, should the information about which time zone had been used get lost or accidentally
modified, the validity of the entire dataset could be compromised. By always using UTC +0 all these
issues are minimized and the processing pipeline becomes vastly easier and more efficient. Still,
this means that after the data has been processed using the heartbeatr-package, the user may
need to adjust the time zone of all timestamps so that the timing matches other information relative
to the experiment.

See Also

e pulse_split(), pulse_optimize(), pulse_heart(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

e PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

pulse_smooth 33

Examples

Begin prepare data ----
paths <- pulse_example()
End prepare data ----

pulse_read(paths)

pulse_smooth Smooth PULSE data

Description

The performance of the algorithm employed in the downstream function pulse_heart () for the de-
tection of heart beat wave crests depends significantly on the data not being too noisy. pulse_smooth()
reshapes the data and improves the likelihood of pulse_heart () successfully estimating the inher-
ent heartbeat rates.

e SMOOTHING should be experimented with when pulse_heart() produces too many heartbeat
rate estimates that are clearly incorrect. In such situations, pulse_smooth() applies a smooth-
ing filter (normal Kernel Regression Smoother) to the data to smooth out high-frequency noise
and render a more sinusoidal wave, which is easier to handle. Unlike interpolation_freq,
users should exercise caution when setting bandwidth and generally opt for lower values, as
there’s a threshold to bandwidth values above which the resulting smoothed pulse data be-
comes completely unrelated to the original data, and the subsequent heartbeat rates computed
with pulse_heart() may be wrong. Always double-check the data after applying a stronger
smoothing. Nonetheless, note that if applied with the default bandwidth, smoothing incurs
no penalty and hardly changes the data - so it isn’t worth going out of the way to not apply
smoothing.

Usage

pulse_smooth(split_window, bandwidth = 0.2)

Arguments

split_window one element of the pulse_data_split list() (which is the output from pulse_split()).

bandwidth numeric, defaults to @. 2; the bandwidth for the Kernel Regression Smoother. If
equal to @ (zero) no smoothing is applied. Normally kept low (0.1 - 0.3) so
that only very high frequency noise is removed, but can be pushed up all the
way to 1 or above (especially when the heartbeat rate is expected to be slow, as
is typical of oysters, but double check the resulting data). Type ?ksmooth for
additional info.

Value

The same PULSE tibble supplied in split_window, but now with data for all channels transformed
by smoothing.

34 pulse_split
See Also
e ksmooth() is used for the kernel smoothing of PULSE data
* pulse_optimize() is a wrapper function that executes pulse_interpolate() and pulse_smooth
sequentially
e pulse_read(), pulse_split(), pulse_heart(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow
* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once
Examples
Begin prepare data ----
pulse_data_sub <- pulse_data
pulse_data_sub$data <- pulse_data_sub$datal,1:5]
pulse_data_split <- pulse_split(pulse_data_sub)
End prepare data ----
Smooth data slightly ('bandwidth' = 0.2)
pulse_smooth(pulse_data_split$datal[1]], 0.2)
pulse_split (STEP 2) Split pulse_data across sequential time windows
Description
* step 1—pulse_read()
e —>>step 2 — pulse_split() <<-
e step 3 —pulse_optimize()
e step 4 —pulse_heart()
* step 5—pulse_doublecheck()
e step 6 —pulse_choose_keep()
After all raw PULSE data has been imported, the dataset must be split across sequential time win-
dows.
pulse_split() takes the output from a call to pulse_read() and splits data across user-defined
time windows. The output of pulse_split() can be immediately passed to pulse_heart(), or
first optimized with pulse_optimize() and only then passed to pulse_heart() (highly recom-
mended).
Usage

pulse_split(

pulse_data,

window_width_secs = 30,
window_shift_secs = 60,
min_data_points = 0.8,

pulse_split 35

subset = 0,
subset_seed = NULL,
subset_reindex = FALSE,

msg = TRUE
)
Arguments
pulse_data the output from a call to pulse_read().

window_width_secs

numeric, in seconds, defaults to 30; the width of the time windows over which
heart rate frequency will be computed.

window_shift_secs
numeric, in seconds, defaults to 60; by how much each subsequent window is
shifted from the preceding one.

min_data_points
numeric, defaults to 0.8; decimal from O to 1, used as a threshold to discard
incomplete windows where data is missing (e.g., if the sampling frequency is
20 and window_width_secs = 30, each window should include 600 data points,
and so if min_data_points = 0.8, windows with less than 600 * 0.8 = 480 data
points will be rejected).

subset numerical, defaults to @; the number of time windows to keep from the entire
dataset (or the number of entries to reject if set to a negative value); smaller
subsets make the entire processing quicker and facilitate the execution of trial
runs to optimize parameter selection before processing the entire dataset.

subset_seed numerical, defaults to NULL; only used if subset is different from 0; subset_seed
controls the seed used when extracting a subset of the available data; if set to
NULL, a random seed is selected, resulting in rows being selected randomly; al-
ternativelly, the user can set a specific seed in order to always select the same
rows (important when the goal is to compare the impact of different parameter
combinations using the exact same data points).

subset_reindex logical, defaults to FALSE; only used if subset is different from ©; after extract-
ing a subset of the available data, should rows be re-indexed (i.e., . $i made
fully sequential); re-indexed rows make using pulse_plot_raw() easier, but
row identity doesn’t match anymore with row identity before subsetting.

msg logical, defaults to TRUE; should non-crucial messages (but not errors) be shown
(mostly for use from within the wrapper function PULSE(), where it is set to
FALSE to avoid the repetition of identical messages)

Value

A tibble with three columns. Column $i stores the order of each time window. Column $smoothed

is a logical vector flagging smoothed data (at this point defaulting to FALSE, but later if pulse_optimize
is used, values can change to TRUE. Column $data is a list with all the valid time windows (i.e.,
complying with min_data_points), each window being a subset of pulse_data (a tibble with at
least 2 columns (time + one or more channels) containing PULSE data with timestamps within that
time window)

36 pulse_split

Window width and shift

A good starting point for window_width_secs is to set it to between 30 and 6@ seconds.

As a rule of thumb, use lower values for data collected from animals with naturally faster heart
rates and/or that have been subjected to treatments conducive to fast heart rates still (e.g., thermal
performance ramps). In such cases, lower values will result in higher temporal resolution, which
may be crucial if experimental conditions are changing rapidly. Conversely, experiments using
animals with naturally slower heart rates and/or subjected to treatments that may cause heart rates
to stabilize or even slow (e.g., control or cold treatments) may require the use of higher values for
window_width_secs, as the resulting windows should encompass no less than 5-7 heartbeat cycles.

As for window_shift_secs, set it to a value:

 smaller than window_width_secs if overlap between windows is desired (not usually rec-
ommended) (if window_width_secs = 30 and window_shift_secs = 15, the first 3 windows
will go from [0, 30), [15, 45) and [30, 60))

* equal to window_width_secs to process all data available (if window_width_secs = 30 and
window_shift_secs = 30, the first 3 windows will go from [@, 30), [30, 60) and [60, 90))

e larger than window_width_secs to skip data (ideal for speeding up the processing of large
datasets) (if window_width_secs = 30 and window_shift_secs = 60, the first 3 windows will
go from [0, 30), [60, 90) and [120, 150))

In addition, also consider that lower values for the window_. .. parameters may lead to oversam-
pling and a cascade of statistical issues, the resolution of which may end up negating any advantage
gained.

Handling gaps in the dataset

min_data_points shouldn’t be set too low, otherwise only nearly empty windows will be rejected.

See Also

e pulse_read(), pulse_optimize(), pulse_heart(), pulse_doublecheck() and pulse_choose_keep()
are the other functions needed for the complete PULSE processing workflow

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once

Examples

Begin prepare data ----

pulse_data_sub <- pulse_data
pulse_data_sub$data <- pulse_data_sub$datal,1:5]
End prepare data ----

pulse_split(pulse_data_sub)

pulse_summarise 37

pulse_summarise Summarise PULSE heartbeat rate estimates over new time windows

Description

Take the output from PULSE () and summarise hz estimates over new user-defined time windows us-
ing FUN (a summary function). In effect, this procedure reduces the number of data points available
over time.

Note that the output of pulse_summarise () can be inspected with pulse_plot() butnot pulse_plot_raw().

Usage

pulse_summarise(
heart_rates,
FUN = stats::median,
span_mins = 10,
min_data_points = 2

)

Arguments

heart_rates the output from PULSE (), pulse_heart (), pulse_doublecheck() or pulse_choose_keep.

FUN a custom function, defaults to median; Note that FUN must take a vector of
numeric values and output a single numeric value.

span_mins integer, in mins, defaults to 10; expresses the width of the new summary win-
dows

min_data_points
numeric, defaults to 2; value indicating the minimum number of data points
in each new summarizing window. Windows covering less data points are dis-
carded. If set to @ (zero), no window is ever discarded.

Value

A similar tibble as the one provided for input, but fewer columns and rows. Among the columns now
absent is the data column (raw data is no longer available). IMPORTANT NOTE: Despite retaining
the same names, several columns present in the output now provide slightly different information
(because they are recalculated for each summarizing window): time corresponds to the first time
stamp of the summarizing window; n shows the number of valid original windows used by the
summary function; sd represents the standard deviation of all heartbeat rate estimates within each
summarizing window (and not the standard deviation of the intervals between each identified wave
peak, as was the case in heart_rates); ci is the confidence interval of the new value for hz.

Details

The PULSE multi-channel system captures data continuously. When processing those data, users
should aim to obtain estimates of heart beat frequency at a rate that conforms to their system’s

38 pulse_summarise

natural temporal variability, or risk running into oversampling (which has important statistical im-
plications and must be avoided or explicitly handled).

With this in mind, users can follow two strategies:

If, for example, users are targeting 1 data point every 5 mins...

o If the raw data is of good quality (i.e., minimal noise, signal wave with large amplitude),
users can opt for a relatively narrow split_window (e.g, by setting window_width_secs in
PULSE() (or pulse_split()) to 3@ secs) and to only sample split_windows every 5 mins
with window_shift_secs = 300. This means that data is processed in 5-mins split-windows
where 30 secs of data are used and four and a half mins of data are skipped, yielding our
target of 1 data point every 5 mins. Doing so will greatly speed up the processing of the data
(less and smaller windows to work on), and the final output will immediately have the desired
sample frequency. However, if any of the split_windows effectively analysed features a gap
in the data or happens to coincide with the occasional drop in signal quality, those estimates
of heartbeat rate will reflect that lack of quality (even if better data may be present in the four
and a half mins of data that is being skipped). This strategy is usually used at the beginning to
assess the dataset, and depending on the results, the more time-consuming strategy described
next may have to be used instead.

* If sufficient computing power is available and/or the raw data can’t be guaranteed to be high
quality from beginning to end, users can opt for a strategy that scans the entire dataset without
skipping any data. This can be achieved by setting window_width_secs and window_shift_secs
in PULSE() (or pulse_split()) to the same low value. In this case, if both parameters are set
to 30 secs, processing will take significantly longer and each 5 mins of data will result in 10
data points. Then, pulse_summarise can be used with span_mins = 5 to summarise the data
points back to the target sample frequency. More importantly, if the right summary function
is used, this strategy can greatly reduce the negative impact of spurious bad readings. For
example, setting FUN = median, will reduce the contribution of values of hz that deviate from
the center ("wrong" values) to the final heartbeat estimate for a given time window). Thus, if
the computational penalty is bearable, this more robust strategy can prove useful.

See Also

e pulse_heart(), pulse_doublecheck(), pulse_choose_keep(), and pulse_normalize()
are the functions that generate the input for pulse_summarise

* pulse_plot() canbe called to visualize the output from pulse_summarise (but not pulse_plot_raw())

* PULSE() is a wrapper function that executes all the steps needed to process PULSE data at
once, and its output can also be passed on to pulse_summarise

Examples

Begin prepare data ----

paths <- pulse_example()

heart_rates <- PULSE(
paths,
discard_channels = c(paste@("c@", c(1:7, 9)), "cl10"),
show_progress = FALSE

)
End prepare data ----

pulse_summarise

Summarise heartbeat estimates (1 data point every 5 mins)

nrow(heart_rates) # == 13
summarised_5mins <- pulse_summarise(heart_rates, span_mins = 5)
nrow(summarised_5mins) # == 3

summarised_5mins

using a custom function
pulse_summarise(heart_rates, span_mins = 5, FUN = function(x) quantile(x, 0.2))

normalized data is supported automatically
pulse_summarise(pulse_normalize(heart_rates))

Note that visualizing the output from 'plot_summarise()' with
‘'pulse_plot()' may result in many warnings
pulse_plot(summarised_5mins)

"> There were 44 warnings (use warnings() to see them)"”

That happens when the value chosen for 'span_mins' is such
that the output from 'plot_summarise()' doesn't contain

enough data points for the smoothing curve to be computed
Alternatively, do one of the following:

reduce 'span_mins' to still get enough data points
pulse_plot(pulse_summarise(heart_rates, span_mins = 2, min_data_points = 0))

or disable the smoothing curve
pulse_plot(summarised_5mins, smooth = FALSE)

39

Index

x datasets
pulse_data, 13

approx(), 8, 22,27
find_peaks, 2
is.pulse, 3
ksmooth(), 8, 27, 34
lubridate: :POSIXct, 23

mean, 23
median, 23

PULSE, 3
PULSE(Q), 7, 11, 12, 15-19, 21-24, 27, 28,
30-32, 34, 36-38
PULSE_by_chunks, 8
PULSE_by_chunks(), 4, 6, 7
pulse_choose_keep, 11, 23, 37
pulse_choose_keep(), 3,7, 8,12, 13,15, 17,
18, 20-22, 24-27, 31, 32, 34, 36, 38
pulse_data, 13
pulse_doublecheck, 13
pulse_doublecheck(), 3, 5,7, 8, 10, 12, 13,
18, 19, 21-25,27, 31, 32, 34, 36-38
pulse_example, 15
pulse_find_peaks_all_channels, 16
pulse_find_peaks_all_channels(), 17, 18,
21
pulse_find_peaks_one_channel, 17
pulse_find_peaks_one_channel(), 17, 18
21
pulse_halve, 19
pulse_heart, 19
pulse_heart(), 3,7, 8, 12-15, 17-19, 22-25,
27, 28, 30-32, 34, 36-38
pulse_interpolate, 21
pulse_interpolate(), 8, 27, 34

40

pulse_normalize, 22
pulse_normalize(), 3,7, 8, 28, 31, 38
pulse_optimize, 25, 35
pulse_optimize(), 3,7, 8,12, 13,15, 17-19,
21, 22,25,27,31, 32, 34, 36
pulse_plot, 27
pulse_plot(), 3, 8, 24, 31, 37, 38
pulse_plot_one, 29
pulse_plot_raw, 30
pulse_plot_raw(), 3, 8, 28, 37, 38
pulse_read, 31
pulse_read(), 3,7, 8,12, 13, 15-19, 21, 22,
25,27,31,34-36
pulse_smooth, 33
pulse_smooth(), 8, 20, 22, 27
pulse_split, 34
pulse_split(), 3,7, 8, 12, 13, 15-22,25-27,
30-34, 38
pulse_summarise, 37
pulse_summarise(), 3,7, 8, 21

	find_peaks
	is.pulse
	PULSE
	PULSE_by_chunks
	pulse_choose_keep
	pulse_data
	pulse_doublecheck
	pulse_example
	pulse_find_peaks_all_channels
	pulse_find_peaks_one_channel
	pulse_halve
	pulse_heart
	pulse_interpolate
	pulse_normalize
	pulse_optimize
	pulse_plot
	pulse_plot_one
	pulse_plot_raw
	pulse_read
	pulse_smooth
	pulse_split
	pulse_summarise
	Index

