es()
is a part of smooth
package and is a wrapper for the ADAM
function with distribution="dnorm"
. It implements
Exponential Smoothing in the ETS form, selecting the most appropriate
model among 30 possible ones.
We will use some of the functions of the greybox
package
in this vignette for demonstrational purposes.
Let’s load the necessary packages:
The simplest call for the es()
function is:
## Forming the pool of models based on... ANN , AAN , Estimation progress: 33 %44 %56 %67 %78 %89 %100 %... Done!
## Time elapsed: 0.15 seconds
## Model estimated using es() function: ETS(AMdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.5686
## Persistence vector g:
## alpha beta
## 0.9453 0.2947
## Damping parameter: 0.8739
## Sample size: 138
## Number of estimated parameters: 4
## Number of degrees of freedom: 134
## Information criteria:
## AIC AICc BIC BICc
## 483.1371 483.4379 494.8461 495.5871
##
## Forecast errors:
## ME: 2.819; MAE: 2.97; RMSE: 3.657
## sCE: 14.882%; Asymmetry: 88%; sMAE: 1.306%; sMSE: 0.026%
## MASE: 2.493; RMSSE: 2.384; rMAE: 0.958; rRMSE: 0.954
In this case function uses branch and bound algorithm to form a pool of models to check and after that constructs a model with the lowest information criterion. As we can see, it also produces an output with brief information about the model, which contains:
holdout=TRUE
).The function has also produced a graph with actual values, fitted values and point forecasts.
If we need prediction interval, then we can use the
forecast()
method:
The same model can be reused for different purposes, for example to produce forecasts based on newly available data:
## Time elapsed: 0 seconds
## Model estimated using es() function: ETS(AMdN)
## With provided initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.3019
## Persistence vector g:
## alpha beta
## 0.9453 0.2947
## Damping parameter: 0.8739
## Sample size: 150
## Number of estimated parameters: 1
## Number of degrees of freedom: 149
## Information criteria:
## AIC AICc BIC BICc
## 512.6037 512.6307 515.6143 515.6821
We can also extract the type of model in order to reuse it later:
## [1] "AMdN"
This handy function also works with ets()
from forecast
package.
If we need actual values from the model, we can use
actuals()
method from greybox
package:
## Time Series:
## Start = 1
## End = 138
## Frequency = 1
## [1] 200.1 199.5 199.4 198.9 199.0 200.2 198.6 200.0 200.3 201.2 201.6 201.5
## [13] 201.5 203.5 204.9 207.1 210.5 210.5 209.8 208.8 209.5 213.2 213.7 215.1
## [25] 218.7 219.8 220.5 223.8 222.8 223.8 221.7 222.3 220.8 219.4 220.1 220.6
## [37] 218.9 217.8 217.7 215.0 215.3 215.9 216.7 216.7 217.7 218.7 222.9 224.9
## [49] 222.2 220.7 220.0 218.7 217.0 215.9 215.8 214.1 212.3 213.9 214.6 213.6
## [61] 212.1 211.4 213.1 212.9 213.3 211.5 212.3 213.0 211.0 210.7 210.1 211.4
## [73] 210.0 209.7 208.8 208.8 208.8 210.6 211.9 212.8 212.5 214.8 215.3 217.5
## [85] 218.8 220.7 222.2 226.7 228.4 233.2 235.7 237.1 240.6 243.8 245.3 246.0
## [97] 246.3 247.7 247.6 247.8 249.4 249.0 249.9 250.5 251.5 249.0 247.6 248.8
## [109] 250.4 250.7 253.0 253.7 255.0 256.2 256.0 257.4 260.4 260.0 261.3 260.4
## [121] 261.6 260.8 259.8 259.0 258.9 257.4 257.7 257.9 257.4 257.3 257.6 258.9
## [133] 257.8 257.7 257.2 257.5 256.8 257.5
We can also use persistence or initials only from the model to construct the other one:
# Provided initials
es(BJsales, model=modelType(ourModel),
h=12, holdout=FALSE,
initial=ourModel$initial)
## Time elapsed: 0.02 seconds
## Model estimated using es() function: ETS(AMdN)
## With provided initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.2707
## Persistence vector g:
## alpha beta
## 0.9658 0.2915
## Damping parameter: 0.8704
## Sample size: 150
## Number of estimated parameters: 4
## Number of degrees of freedom: 146
## Information criteria:
## AIC AICc BIC BICc
## 518.5413 518.8172 530.5839 531.2750
# Provided persistence
es(BJsales, model=modelType(ourModel),
h=12, holdout=FALSE,
persistence=ourModel$persistence)
## Time elapsed: 0.01 seconds
## Model estimated using es() function: ETS(AMdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.2977
## Persistence vector g:
## alpha beta
## 0.9453 0.2947
## Damping parameter: 0.8688
## Sample size: 150
## Number of estimated parameters: 2
## Number of degrees of freedom: 148
## Information criteria:
## AIC AICc BIC BICc
## 514.5954 514.6770 520.6166 520.8211
or provide some arbitrary values:
## Time elapsed: 0.03 seconds
## Model estimated using es() function: ETS(AMdN)
## With provided initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 255.3623
## Persistence vector g:
## alpha beta
## 0.9989 0.2616
## Damping parameter: 0.886
## Sample size: 150
## Number of estimated parameters: 5
## Number of degrees of freedom: 145
## Information criteria:
## AIC AICc BIC BICc
## 520.7246 521.1412 535.7777 536.8216
Using some other parameters may lead to completely different model and forecasts (see discussion of the additional parameters in the online textbook about ADAM):
## Time elapsed: 0.46 seconds
## Model estimated using es() function: ETS(AMN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: MSEh; Loss function value: 101.6095
## Persistence vector g:
## alpha beta
## 1.5977 0.0000
##
## Sample size: 138
## Number of estimated parameters: 2
## Number of degrees of freedom: 136
## Information criteria:
## AIC AICc BIC BICc
## 1033.344 1033.433 1039.198 1039.418
##
## Forecast errors:
## ME: -0.824; MAE: 1.318; RMSE: 1.486
## sCE: -4.35%; Asymmetry: -62.6%; sMAE: 0.58%; sMSE: 0.004%
## MASE: 1.106; RMSSE: 0.969; rMAE: 0.425; rRMSE: 0.388
You can play around with all the available parameters to see what’s their effect on the final model.
In order to combine forecasts we need to use “C” letter:
## Time elapsed: 0.17 seconds
## Model estimated: ETS(CCN)
## Loss function type: likelihood
##
## Number of models combined: 10
## Sample size: 138
## Average number of estimated parameters: 4.1766
## Average number of degrees of freedom: 133.8234
##
## Forecast errors:
## ME: 2.833; MAE: 2.981; RMSE: 3.672
## sCE: 14.957%; sMAE: 1.311%; sMSE: 0.026%
## MASE: 2.502; RMSSE: 2.393; rMAE: 0.962; rRMSE: 0.958
Model selection from a specified pool and forecasts combination are called using respectively:
# Select the best model in the pool
es(BJsales, model=c("ANN","AAN","AAdN","MNN","MAN","MAdN"),
h=12, holdout=TRUE)
## Time elapsed: 0.06 seconds
## Model estimated using es() function: ETS(AAdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.6265
## Persistence vector g:
## alpha beta
## 0.9456 0.2965
## Damping parameter: 0.8795
## Sample size: 138
## Number of estimated parameters: 4
## Number of degrees of freedom: 134
## Information criteria:
## AIC AICc BIC BICc
## 483.2529 483.5537 494.9619 495.7029
##
## Forecast errors:
## ME: 2.818; MAE: 2.968; RMSE: 3.655
## sCE: 14.877%; Asymmetry: 88%; sMAE: 1.306%; sMSE: 0.026%
## MASE: 2.492; RMSSE: 2.383; rMAE: 0.958; rRMSE: 0.954
# Combine the pool of models
es(BJsales, model=c("CCC","ANN","AAN","AAdN","MNN","MAN","MAdN"),
h=12, holdout=TRUE)
## Time elapsed: 0.06 seconds
## Model estimated: ETS(CCN)
## Loss function type: likelihood
##
## Number of models combined: 6
## Sample size: 138
## Average number of estimated parameters: 4
## Average number of degrees of freedom: 134
##
## Forecast errors:
## ME: 2.837; MAE: 2.983; RMSE: 3.676
## sCE: 14.977%; sMAE: 1.312%; sMSE: 0.026%
## MASE: 2.505; RMSSE: 2.396; rMAE: 0.962; rRMSE: 0.959
Now we introduce explanatory variable in ETS:
and fit an ETSX model with the exogenous variable first:
## Time elapsed: 0.41 seconds
## Model estimated using es() function: ETSX(AMdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.5191
## Persistence vector g (excluding xreg):
## alpha beta
## 0.9525 0.2876
## Damping parameter: 0.8784
## Sample size: 138
## Number of estimated parameters: 5
## Number of degrees of freedom: 133
## Information criteria:
## AIC AICc BIC BICc
## 485.0381 485.4927 499.6744 500.7942
##
## Forecast errors:
## ME: 2.88; MAE: 3.002; RMSE: 3.705
## sCE: 15.201%; Asymmetry: 90.1%; sMAE: 1.321%; sMSE: 0.027%
## MASE: 2.52; RMSSE: 2.415; rMAE: 0.968; rRMSE: 0.967
If we want to check if lagged x can be used for forecasting purposes,
we can use xregExpander()
function from
greybox
package:
## Time elapsed: 1.48 seconds
## Model estimated using es() function: ETSX(AMdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 236.465
## Persistence vector g (excluding xreg):
## alpha beta
## 1.000 0.313
## Damping parameter: 0.8382
## Sample size: 138
## Number of estimated parameters: 7
## Number of degrees of freedom: 131
## Information criteria:
## AIC AICc BIC BICc
## 486.9301 487.7916 507.4208 509.5433
##
## Forecast errors:
## ME: 2.35; MAE: 2.848; RMSE: 3.347
## sCE: 12.406%; Asymmetry: 72.5%; sMAE: 1.253%; sMSE: 0.022%
## MASE: 2.391; RMSSE: 2.182; rMAE: 0.919; rRMSE: 0.874
We can also construct a model with selected exogenous (based on IC):
## Time elapsed: 1.19 seconds
## Model estimated using es() function: ETS(AMdN)
## With backcasting initialisation
## Distribution assumed in the model: Normal
## Loss function type: likelihood; Loss function value: 237.5686
## Persistence vector g:
## alpha beta
## 0.9453 0.2947
## Damping parameter: 0.8739
## Sample size: 138
## Number of estimated parameters: 4
## Number of degrees of freedom: 134
## Information criteria:
## AIC AICc BIC BICc
## 483.1371 483.4379 494.8461 495.5871
##
## Forecast errors:
## ME: 2.819; MAE: 2.97; RMSE: 3.657
## sCE: 14.882%; Asymmetry: 88%; sMAE: 1.306%; sMSE: 0.026%
## MASE: 2.493; RMSSE: 2.384; rMAE: 0.958; rRMSE: 0.954
Finally, if you work with M or M3 data, and need to test a function on a specific time series, you can use the following simplified call:
This command has taken the data, split it into in-sample and holdout and produced the forecast of appropriate length to the holdout.